Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc)

Overview

Heart-Failure-Prediction

Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc). Structured a custom ensemble model and a neural network. Found a outperformed model for heart failure prediction accuracy of 88 percent.

Introduction

Cardiovascular diseases (CVDs) are the number 1 cause of death globally, taking an estimated 17.9 million lives each year, which accounts for 31% of all deaths worldwide. Four out of 5CVD deaths are due to heart attacks and strokes. Heart failure is a common event caused by CVDs and this dataset contains 11 features that can be used to predict a possible heart disease.

People with cardiovascular disease or who are at high cardiovascular risk need early detection and management wherein a machine learning model can be of great help.

Table of Contents

  • [Data]

    • [What We need to do]
  • [Exploratory Data Analysis]

    • [Target Variable]
    • [Features]
  • [Model Selection]

    • [Model Creation and Comparison]
    • [Bulid a custom ensemble (superlearner) with best three of models]
    • [Neural Networks]
    • [Feature Importance]
  • [Conclusion]

DATA

1 Age: Age of the patient [years]

2 Sex: Sex of the patient [M: Male, F: Female]

3 ChestPainType: [TA: Typical Angina, ATA: Atypical Angina, NAP: Non-Anginal Pain, ASY: Asymptomatic]

4 RestingBP: Resting blood pressure [mm Hg]

5 Cholesterol: Serum cholesterol [mm/dl]

6 FastingBS: Fasting blood sugar [1: if FastingBS > 120 mg/dl, 0: otherwise]

7 RestingECG: Resting electrocardiogram results [Normal: Normal, ST: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV), LVH: showing probable or definite left ventricular hypertrophy by Estes' criteria]

8 MaxHR: Maximum heart rate achieved [Numeric value between 60 and 202]

9 ExerciseAngina: Exercise-induced angina [Y: Yes, N: No]

10 Oldpeak: ST [Numeric value measured in depression] (

11 ST_Slope: The slope of the peak exercise ST segment [Up: upsloping, Flat: flat, Down: downsloping]

12 HeartDisease: Output class [1: heart disease, 0: Normal]

Reference: https://www.kaggle.com/fedesoriano/heart-failure-prediction

Owner
Chris Yuan
Motivated, open-minded, and detail-oriented student currently working towards a degree in Data Science.
Chris Yuan
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Jan 06, 2023
Forecast dynamically at scale with this unique package. pip install scalecast

🌄 Scalecast: Dynamic Forecasting at Scale About This package uses a scaleable forecasting approach in Python with common scikit-learn and statsmodels

Michael Keith 158 Jan 03, 2023
A Python step-by-step primer for Machine Learning and Optimization

early-ML Presentation General Machine Learning tutorials A Python step-by-step primer for Machine Learning and Optimization This github repository gat

Dimitri Bettebghor 8 Dec 01, 2022
neurodsp is a collection of approaches for applying digital signal processing to neural time series

neurodsp is a collection of approaches for applying digital signal processing to neural time series, including algorithms that have been proposed for the analysis of neural time series. It also inclu

NeuroDSP 224 Dec 02, 2022
Predicting job salaries from ads - a Kaggle competition

Predicting job salaries from ads - a Kaggle competition

Zygmunt Zając 57 Oct 23, 2020
Microsoft 5.6k Jan 07, 2023
Python Research Framework

Python Research Framework

EleutherAI 106 Dec 13, 2022
monolish: MONOlithic Liner equation Solvers for Highly-parallel architecture

monolish is a linear equation solver library that monolithically fuses variable data type, matrix structures, matrix data format, vendor specific data transfer APIs, and vendor specific numerical alg

RICOS Co. Ltd. 179 Dec 21, 2022
Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku

Puesta en Producción de un modelo de aprendizaje automático con Flask y Heroku L

Jesùs Guillen 1 Jun 03, 2022
A Multipurpose Library for Synthetic Time Series Generation in Python

TimeSynth Multipurpose Library for Synthetic Time Series Please cite as: J. R. Maat, A. Malali, and P. Protopapas, “TimeSynth: A Multipurpose Library

278 Dec 26, 2022
Machine Learning Algorithms

Machine-Learning-Algorithms In this project, the dataset was created through a survey opened on Google forms. The purpose of the form is to find the p

Göktuğ Ayar 3 Aug 10, 2022
Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto: Machine Learning: Linguagens de Programacao 2004-2001 Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2

Victor Hugo Negrisoli 0 Jun 29, 2021
LibTraffic is a unified, flexible and comprehensive traffic prediction library based on PyTorch

LibTraffic is a unified, flexible and comprehensive traffic prediction library, which provides researchers with a credibly experimental tool and a convenient development framework. Our library is imp

432 Jan 05, 2023
Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning

Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, define-by-run style user API.

7.4k Jan 04, 2023
ML Optimizers from scratch using JAX

Toy implementations of some popular ML optimizers using Python/JAX

Shreyansh Singh 38 Jul 29, 2022
Bayesian optimization in JAX

Bayesian optimization in JAX

Predictive Intelligence Lab 26 May 11, 2022
CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

Zelros 67 Dec 28, 2022
A webpage that utilizes machine learning to extract sentiments from tweets.

Tweets_Classification_Webpage The goal of this project is to be able to predict what rating customers on social media platforms would give to products

Ayaz Nakhuda 1 Dec 30, 2021
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just

wenqi 2 Jun 26, 2022
BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models.

Model Serving Made Easy BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models. Supports multi

BentoML 4.4k Jan 04, 2023