Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Overview

Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2004 a 2021 obtidos a partir do seguinte dataset do Kaggle.

Tecnologias

  • Python 3
  • Jupyter Notebook
  • Pandas
  • NumPy
  • Matplotlib
  • Seaborn
  • Scikit-Learn
  • Requests
  • REST API Call (Github API)

Algoritmos

  • Regressão Linear

Inicialmente, serão visualizados dados de séries temporais e regressão linear.

Tratamento de dados

df = pd.read_csv('Most Popular Programming Languages from 2004 to 2021 V4.csv')

def createDataFrameFor(df, colunas, colunaAtual):
    return pd.DataFrame(
        {
            'Date': df.Date,
            'Timestamp': map(lambda i : datetime.strptime(df["Date"][i], '%B %Y'), range(len(df.Date))),
            'Language': colunas[colunaAtual],
            'Value': df[df.columns[colunaAtual]]
        }
    )

colunas = df.columns

dados_tratados = createDataFrameFor(df, colunas, 1)

for coluna in range(1, len(colunas)):
    dados_tratados = pd.concat([dados_tratados, createDataFrameFor(df, colunas, coluna)])

dados_tratados.reset_index(drop=True, inplace=True)

dados_tratados['UnixTime'] = list(map(lambda i: (pd.to_datetime([dados_tratados['Timestamp'][i]]).astype(int) / 10**9)[0], range(len(dados_tratados['Date']))))

Visualização dos dados

df_java = dados_tratados[dados_tratados['Language'] == 'Java']
sns.regplot(x="UnixTime", y="Value", data= df_java)
plt.gcf().set_size_inches(16, 6)
plt.ylabel('% de uso da linguagem Java')
plt.xlabel('Anos em Unix Time de 2004 a 2021')
plt.show()

X = df_java.UnixTime.values.reshape(-1, 1)
y = df_java.Value.values.reshape(-1, 1)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)

reg = linear_model.LinearRegression()
reg.fit(X_train, y_train)
y_pred = reg.predict(X_test)

plt.scatter(X_test, y_test,  color='blue')
plt.plot(X_test, y_pred, color='red', linewidth=3)

plt.gcf().set_size_inches(16, 6)

plt.ylabel('% de uso da linguagem Java')
plt.xlabel('Anos em Unix Time de 2004 a 2021')

plt.show()

Plots gerados

  • Regressão Linear com Seaborn (SNS):

Seaborn

  • Regressão Linear com Scikit-Learn (LinearRegression) e Matplotlib:

Matplotlib ScikitLearn

Plots de evolução das linguagens Java, Javascript, Python, C#, PHP, Delphi, Dart e Cobol nos últimos 17 anos

dados = df

dados['Date'] = pd.to_datetime(dados['Date'])
dados.set_index('Date', inplace = True) 

fig, axes = plt.subplots(nrows=4, ncols=2)

dados['Java'].plot(ax=axes[0,0], title = "Análise da linguagem Java nos últimos 17 anos")
dados['JavaScript'].plot(ax=axes[1,0], title = "Análise da linguagem JavaScript nos últimos 17 anos")
dados['Python'].plot(ax=axes[0,1], title = "Análise da linguagem Python nos últimos 17 anos")
dados['C#'].plot(ax=axes[1,1], title = "Análise da linguagem C# nos últimos 17 anos")
dados['PHP'].plot(ax=axes[2,0], title = "Análise da linguagem PHP nos últimos 17 anos")
dados['Delphi'].plot(ax=axes[2,1], title = "Análise da linguagem Delphi nos últimos 17 anos")
dados['Dart'].plot(ax=axes[3,0], title = "Análise da linguagem Dart nos últimos 17 anos")
dados['Cobol'].plot(ax=axes[3,1], title = "Análise da linguagem Cobol nos últimos 17 anos")

plt.gcf().set_size_inches(16, 22)

plt.show()

17 anos

Autor

  • Victor Hugo Negrisoli
  • Desenvolvedor Back-End Sênior | Analista de Dados
Owner
Victor Hugo Negrisoli
Cientista da Computação (UniFil), cursando pós em Data Science (PUC-MG), experiência em Java, Javascript e Python. Atuo como Desenvolvedor Back-End na Ilegra
Victor Hugo Negrisoli
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023
A quick reference guide to the most commonly used patterns and functions in PySpark SQL

Using PySpark we can process data from Hadoop HDFS, AWS S3, and many file systems. PySpark also is used to process real-time data using Streaming and

Sundar Ramamurthy 53 Dec 21, 2022
Bonsai: Gradient Boosted Trees + Bayesian Optimization

Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.

24 Oct 27, 2022
A logistic regression model for health insurance purchasing prediction

Logistic_Regression_Model A logistic regression model for health insurance purchasing prediction This code is using these packages, so please make sur

ShawnWang 1 Nov 29, 2021
A benchmark of data-centric tasks from across the machine learning lifecycle.

A benchmark of data-centric tasks from across the machine learning lifecycle.

61 Dec 28, 2022
Apple-voice-recognition - Machine Learning

Apple-voice-recognition Machine Learning How does Siri work? Siri is based on large-scale Machine Learning systems that employ many aspects of data sc

Harshith VH 1 Oct 22, 2021
EbookMLCB - ebook Machine Learning cơ bản

Mã nguồn cuốn ebook "Machine Learning cơ bản", Vũ Hữu Tiệp. ebook Machine Learning cơ bản pdf-black_white, pdf-color. Mọi hình thức sao chép, in ấn đề

943 Jan 02, 2023
A simple example of ML classification, cross validation, and visualization of feature importances

Simple-Classifier This is a basic example of how to use several different libraries for classification and ensembling, mostly with sklearn. Example as

Rob 2 Aug 25, 2022
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

Facebook 15.4k Jan 07, 2023
Distributed Tensorflow, Keras and PyTorch on Apache Spark/Flink & Ray

A unified Data Analytics and AI platform for distributed TensorFlow, Keras and PyTorch on Apache Spark/Flink & Ray What is Analytics Zoo? Analytics Zo

2.5k Dec 28, 2022
Microsoft 5.6k Jan 07, 2023
MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training

MosaicML Composer MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training. We aim to ease th

MosaicML 2.8k Jan 06, 2023
Polyglot Machine Learning example for scraping similar news articles.

Polyglot Machine Learning example for scraping similar news articles In this example, we will see how we can work with Machine Learning applications w

MetaCall 15 Mar 28, 2022
Transpile trained scikit-learn estimators to C, Java, JavaScript and others.

sklearn-porter Transpile trained scikit-learn estimators to C, Java, JavaScript and others. It's recommended for limited embedded systems and critical

Darius Morawiec 1.2k Jan 05, 2023
PyPOTS - A Python Toolbox for Data Mining on Partially-Observed Time Series

A python toolbox/library for data mining on partially-observed time series, supporting tasks of forecasting/imputation/classification/clustering on incomplete multivariate time series with missing va

Wenjie Du 179 Dec 31, 2022
A model to predict steering torque fully end-to-end

torque_model The torque model is a spiritual successor to op-smart-torque, which was a project to train a neural network to control a car's steering f

Shane Smiskol 4 Jun 03, 2022
MegFlow - Efficient ML solutions for long-tailed demands.

Efficient ML solutions for long-tailed demands.

旷视天元 MegEngine 371 Dec 21, 2022
Decision tree is the most powerful and popular tool for classification and prediction

Diabetes Prediction Using Decision Tree Introduction Decision tree is the most powerful and popular tool for classification and prediction. A Decision

Arjun U 1 Jan 23, 2022
Python module for performing linear regression for data with measurement errors and intrinsic scatter

Linear regression for data with measurement errors and intrinsic scatter (BCES) Python module for performing robust linear regression on (X,Y) data po

Rodrigo Nemmen 56 Sep 27, 2022
A simple python program which predicts the success of a movie based on it's type, actor, actress and director

Movie-Success-Prediction A simple python program which predicts the success of a movie based on it's type, actor, actress and director. The program us

Mahalinga Prasad R N 1 Dec 17, 2021