Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Overview

Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2004 a 2021 obtidos a partir do seguinte dataset do Kaggle.

Tecnologias

  • Python 3
  • Jupyter Notebook
  • Pandas
  • NumPy
  • Matplotlib
  • Seaborn
  • Scikit-Learn
  • Requests
  • REST API Call (Github API)

Algoritmos

  • Regressão Linear

Inicialmente, serão visualizados dados de séries temporais e regressão linear.

Tratamento de dados

df = pd.read_csv('Most Popular Programming Languages from 2004 to 2021 V4.csv')

def createDataFrameFor(df, colunas, colunaAtual):
    return pd.DataFrame(
        {
            'Date': df.Date,
            'Timestamp': map(lambda i : datetime.strptime(df["Date"][i], '%B %Y'), range(len(df.Date))),
            'Language': colunas[colunaAtual],
            'Value': df[df.columns[colunaAtual]]
        }
    )

colunas = df.columns

dados_tratados = createDataFrameFor(df, colunas, 1)

for coluna in range(1, len(colunas)):
    dados_tratados = pd.concat([dados_tratados, createDataFrameFor(df, colunas, coluna)])

dados_tratados.reset_index(drop=True, inplace=True)

dados_tratados['UnixTime'] = list(map(lambda i: (pd.to_datetime([dados_tratados['Timestamp'][i]]).astype(int) / 10**9)[0], range(len(dados_tratados['Date']))))

Visualização dos dados

df_java = dados_tratados[dados_tratados['Language'] == 'Java']
sns.regplot(x="UnixTime", y="Value", data= df_java)
plt.gcf().set_size_inches(16, 6)
plt.ylabel('% de uso da linguagem Java')
plt.xlabel('Anos em Unix Time de 2004 a 2021')
plt.show()

X = df_java.UnixTime.values.reshape(-1, 1)
y = df_java.Value.values.reshape(-1, 1)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)

reg = linear_model.LinearRegression()
reg.fit(X_train, y_train)
y_pred = reg.predict(X_test)

plt.scatter(X_test, y_test,  color='blue')
plt.plot(X_test, y_pred, color='red', linewidth=3)

plt.gcf().set_size_inches(16, 6)

plt.ylabel('% de uso da linguagem Java')
plt.xlabel('Anos em Unix Time de 2004 a 2021')

plt.show()

Plots gerados

  • Regressão Linear com Seaborn (SNS):

Seaborn

  • Regressão Linear com Scikit-Learn (LinearRegression) e Matplotlib:

Matplotlib ScikitLearn

Plots de evolução das linguagens Java, Javascript, Python, C#, PHP, Delphi, Dart e Cobol nos últimos 17 anos

dados = df

dados['Date'] = pd.to_datetime(dados['Date'])
dados.set_index('Date', inplace = True) 

fig, axes = plt.subplots(nrows=4, ncols=2)

dados['Java'].plot(ax=axes[0,0], title = "Análise da linguagem Java nos últimos 17 anos")
dados['JavaScript'].plot(ax=axes[1,0], title = "Análise da linguagem JavaScript nos últimos 17 anos")
dados['Python'].plot(ax=axes[0,1], title = "Análise da linguagem Python nos últimos 17 anos")
dados['C#'].plot(ax=axes[1,1], title = "Análise da linguagem C# nos últimos 17 anos")
dados['PHP'].plot(ax=axes[2,0], title = "Análise da linguagem PHP nos últimos 17 anos")
dados['Delphi'].plot(ax=axes[2,1], title = "Análise da linguagem Delphi nos últimos 17 anos")
dados['Dart'].plot(ax=axes[3,0], title = "Análise da linguagem Dart nos últimos 17 anos")
dados['Cobol'].plot(ax=axes[3,1], title = "Análise da linguagem Cobol nos últimos 17 anos")

plt.gcf().set_size_inches(16, 22)

plt.show()

17 anos

Autor

  • Victor Hugo Negrisoli
  • Desenvolvedor Back-End Sênior | Analista de Dados
Owner
Victor Hugo Negrisoli
Cientista da Computação (UniFil), cursando pós em Data Science (PUC-MG), experiência em Java, Javascript e Python. Atuo como Desenvolvedor Back-End na Ilegra
Victor Hugo Negrisoli
MasTrade is a trading bot in baselines3,pytorch,gym

mastrade MasTrade is a trading bot in baselines3,pytorch,gym idea we have for example 1 btc and we buy a crypto with it with market option to trade in

Masoud Azizi 18 May 24, 2022
Tutorial for Decision Threshold In Machine Learning.

Decision-Threshold-ML Tutorial for improve skills: 'Decision Threshold In Machine Learning' (from GeeksforGeeks) by Marcus Mariano For more informatio

0 Jan 20, 2022
JMP is a Mixed Precision library for JAX.

Mixed precision training [0] is a technique that mixes the use of full and half precision floating point numbers during training to reduce the memory bandwidth requirements and improve the computatio

DeepMind 108 Dec 31, 2022
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
Python factor analysis library (PCA, CA, MCA, MFA, FAMD)

Prince is a library for doing factor analysis. This includes a variety of methods including principal component analysis (PCA) and correspondence anal

Max Halford 915 Dec 31, 2022
A Tools that help Data Scientists and ML engineers train and deploy ML models.

Domino Research This repo contains projects under active development by the Domino R&D team. We build tools that help Data Scientists and ML engineers

Domino Data Lab 73 Oct 17, 2022
Class-imbalanced / Long-tailed ensemble learning in Python. Modular, flexible, and extensible

IMBENS: Class-imbalanced Ensemble Learning in Python Language: English | Chinese/中文 Links: Documentation | Gallery | PyPI | Changelog | Source | Downl

Zhining Liu 176 Jan 04, 2023
ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

Broad Institute 65 Dec 20, 2022
InfiniteBoost: building infinite ensembles with gradient descent

InfiniteBoost Code for a paper InfiniteBoost: building infinite ensembles with gradient descent (arXiv:1706.01109). A. Rogozhnikov, T. Likhomanenko De

Alex Rogozhnikov 183 Jan 03, 2023
This is a curated list of medical data for machine learning

Medical Data for Machine Learning This is a curated list of medical data for machine learning. This list is provided for informational purposes only,

Andrew L. Beam 5.4k Dec 26, 2022
Graphsignal is a machine learning model monitoring platform.

Graphsignal is a machine learning model monitoring platform. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model

Graphsignal 143 Dec 05, 2022
2021 Machine Learning Security Evasion Competition

2021 Machine Learning Security Evasion Competition This repository contains code samples for the 2021 Machine Learning Security Evasion Competition. P

Fabrício Ceschin 8 May 01, 2022
Toolss - Automatic installer of hacking tools (ONLY FOR TERMUKS!)

Tools Автоматический установщик хакерских утилит (ТОЛЬКО ДЛЯ ТЕРМУКС!) Оригиналь

14 Jan 05, 2023
Visualize classified time series data with interactive Sankey plots in Google Earth Engine

sankee Visualize changes in classified time series data with interactive Sankey plots in Google Earth Engine Contents Description Installation Using P

Aaron Zuspan 76 Dec 15, 2022
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster

[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm

Daniel Han-Chen 1.4k Jan 01, 2023
Extended Isolation Forest for Anomaly Detection

Table of contents Extended Isolation Forest Summary Motivation Isolation Forest Extension The Code Installation Requirements Use Citation Releases Ext

Sahand Hariri 377 Dec 18, 2022
🔬 A curated list of awesome machine learning strategies & tools in financial market.

🔬 A curated list of awesome machine learning strategies & tools in financial market.

GeorgeZou 1.6k Dec 30, 2022
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

Facebook 15.4k Jan 07, 2023
Applied Machine Learning for Graduate Program in Computer Science (PPGCC)

Applied Machine Learning for Graduate Program in Computer Science (PPGCC) - Federal University of Santa Catarina

Jônatas Negri Grandini 1 Dec 22, 2021