Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Overview

Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2004 a 2021 obtidos a partir do seguinte dataset do Kaggle.

Tecnologias

  • Python 3
  • Jupyter Notebook
  • Pandas
  • NumPy
  • Matplotlib
  • Seaborn
  • Scikit-Learn
  • Requests
  • REST API Call (Github API)

Algoritmos

  • Regressão Linear

Inicialmente, serão visualizados dados de séries temporais e regressão linear.

Tratamento de dados

df = pd.read_csv('Most Popular Programming Languages from 2004 to 2021 V4.csv')

def createDataFrameFor(df, colunas, colunaAtual):
    return pd.DataFrame(
        {
            'Date': df.Date,
            'Timestamp': map(lambda i : datetime.strptime(df["Date"][i], '%B %Y'), range(len(df.Date))),
            'Language': colunas[colunaAtual],
            'Value': df[df.columns[colunaAtual]]
        }
    )

colunas = df.columns

dados_tratados = createDataFrameFor(df, colunas, 1)

for coluna in range(1, len(colunas)):
    dados_tratados = pd.concat([dados_tratados, createDataFrameFor(df, colunas, coluna)])

dados_tratados.reset_index(drop=True, inplace=True)

dados_tratados['UnixTime'] = list(map(lambda i: (pd.to_datetime([dados_tratados['Timestamp'][i]]).astype(int) / 10**9)[0], range(len(dados_tratados['Date']))))

Visualização dos dados

df_java = dados_tratados[dados_tratados['Language'] == 'Java']
sns.regplot(x="UnixTime", y="Value", data= df_java)
plt.gcf().set_size_inches(16, 6)
plt.ylabel('% de uso da linguagem Java')
plt.xlabel('Anos em Unix Time de 2004 a 2021')
plt.show()

X = df_java.UnixTime.values.reshape(-1, 1)
y = df_java.Value.values.reshape(-1, 1)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)

reg = linear_model.LinearRegression()
reg.fit(X_train, y_train)
y_pred = reg.predict(X_test)

plt.scatter(X_test, y_test,  color='blue')
plt.plot(X_test, y_pred, color='red', linewidth=3)

plt.gcf().set_size_inches(16, 6)

plt.ylabel('% de uso da linguagem Java')
plt.xlabel('Anos em Unix Time de 2004 a 2021')

plt.show()

Plots gerados

  • Regressão Linear com Seaborn (SNS):

Seaborn

  • Regressão Linear com Scikit-Learn (LinearRegression) e Matplotlib:

Matplotlib ScikitLearn

Plots de evolução das linguagens Java, Javascript, Python, C#, PHP, Delphi, Dart e Cobol nos últimos 17 anos

dados = df

dados['Date'] = pd.to_datetime(dados['Date'])
dados.set_index('Date', inplace = True) 

fig, axes = plt.subplots(nrows=4, ncols=2)

dados['Java'].plot(ax=axes[0,0], title = "Análise da linguagem Java nos últimos 17 anos")
dados['JavaScript'].plot(ax=axes[1,0], title = "Análise da linguagem JavaScript nos últimos 17 anos")
dados['Python'].plot(ax=axes[0,1], title = "Análise da linguagem Python nos últimos 17 anos")
dados['C#'].plot(ax=axes[1,1], title = "Análise da linguagem C# nos últimos 17 anos")
dados['PHP'].plot(ax=axes[2,0], title = "Análise da linguagem PHP nos últimos 17 anos")
dados['Delphi'].plot(ax=axes[2,1], title = "Análise da linguagem Delphi nos últimos 17 anos")
dados['Dart'].plot(ax=axes[3,0], title = "Análise da linguagem Dart nos últimos 17 anos")
dados['Cobol'].plot(ax=axes[3,1], title = "Análise da linguagem Cobol nos últimos 17 anos")

plt.gcf().set_size_inches(16, 22)

plt.show()

17 anos

Autor

  • Victor Hugo Negrisoli
  • Desenvolvedor Back-End Sênior | Analista de Dados
Owner
Victor Hugo Negrisoli
Cientista da Computação (UniFil), cursando pós em Data Science (PUC-MG), experiência em Java, Javascript e Python. Atuo como Desenvolvedor Back-End na Ilegra
Victor Hugo Negrisoli
Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Artsem Zhyvalkouski 64 Nov 30, 2022
Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

FINRA 25 Dec 28, 2022
Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies

Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies. We have amassed a dataset of millions of rows of high-frequency market data dating back to 2018 w

Panagiotis (Panos) Mavritsakis 4 Sep 22, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
Polyglot Machine Learning example for scraping similar news articles.

Polyglot Machine Learning example for scraping similar news articles In this example, we will see how we can work with Machine Learning applications w

MetaCall 15 Mar 28, 2022
An implementation of Relaxed Linear Adversarial Concept Erasure (RLACE)

Background This repository contains an implementation of Relaxed Linear Adversarial Concept Erasure (RLACE). Given a dataset X of dense representation

Shauli Ravfogel 4 Apr 13, 2022
Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any student(s) having the second lowest grade.

Hackerank-Nested-List Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any s

Sangeeth Mathew John 2 Dec 14, 2021
PyTorch extensions for high performance and large scale training.

Description FairScale is a PyTorch extension library for high performance and large scale training on one or multiple machines/nodes. This library ext

Facebook Research 2k Dec 28, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 363 Dec 14, 2022
Uses WiFi signals :signal_strength: and machine learning to predict where you are

Uses WiFi signals and machine learning (sklearn's RandomForest) to predict where you are. Even works for small distances like 2-10 meters.

Pascal van Kooten 5k Jan 09, 2023
Official code for HH-VAEM

HH-VAEM This repository contains the official Pytorch implementation of the Hierarchical Hamiltonian VAE for Mixed-type Data (HH-VAEM) model and the s

Ignacio Peis 8 Nov 30, 2022
Create large-scale ML-driven multiscale simulation ensembles to study the interactions

MuMMI RAS v0.1 Released: Nov 16, 2021 MuMMI RAS is the application component of the MuMMI framework developed to create large-scale ML-driven multisca

4 Feb 16, 2022
My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data

kNN-vs-RFR My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data In many areas, rental bikes have been launched to

1 Oct 28, 2021
Machine Learning Study 혼자 해보기

Machine Learning Study 혼자 해보기 기여자 (Contributors) ✨ Teddy Lee 🏠 HongJaeKwon 🏠 Seungwoo Han 🏠 Tae Heon Kim 🏠 Steve Kwon 🏠 SW Song 🏠 K1A2 🏠 Wooil

Teddy Lee 1.7k Jan 01, 2023
Lseng-iseng eksplor Machine Learning dengan menggunakan library Scikit-Learn

Kalo dengar istilah ML, biasanya rada ambigu. Soalnya punya beberapa kepanjangan, seperti Mobile Legend, Makan Lontong, Ma**ng L*v* dan lain-lain. Tapi pada repo ini membahas Machine Learning :)

Alfiyanto Kondolele 1 Apr 06, 2022
BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python

BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python. Some of the algorithms included are mor

Jared M. Smith 40 Aug 26, 2022
JMP is a Mixed Precision library for JAX.

Mixed precision training [0] is a technique that mixes the use of full and half precision floating point numbers during training to reduce the memory bandwidth requirements and improve the computatio

DeepMind 108 Dec 31, 2022
Neural Machine Translation (NMT) tutorial with OpenNMT-py

Neural Machine Translation (NMT) tutorial with OpenNMT-py. Data preprocessing, model training, evaluation, and deployment.

Yasmin Moslem 29 Jan 09, 2023
A model to predict steering torque fully end-to-end

torque_model The torque model is a spiritual successor to op-smart-torque, which was a project to train a neural network to control a car's steering f

Shane Smiskol 4 Jun 03, 2022
Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets

Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets Datasets Used: Iris dataset,

Samrat Mitra 2 Nov 18, 2021