Uses WiFi signals :signal_strength: and machine learning to predict where you are

Overview

whereami

Build Status Coverage Status PyPI PyPI

Uses WiFi signals and machine learning (sklearn's RandomForest) to predict where you are. Even works for small distances like 2-10 meters.

Your computer will known whether you are on Couch #1 or Couch #2.

Cross-platform

Works on OSX, Windows, Linux (tested on Ubuntu/Arch Linux).

The package access_points was created in the process to allow scanning wifi in a cross platform manner. Using access_points at command-line will allow you to scan wifi yourself and get JSON output. whereami builds on top of it.

Installation

pip install whereami

Usage

# in your bedroom, takes a sample
whereami learn -l bedroom

# in your kitchen, takes a sample
whereami learn -l kitchen

# get a list of already learned locations
whereami locations

# cross-validated accuracy on historic data
whereami crossval
# 0.99319

# use in other applications, e.g. by piping the most likely answer:
whereami predict | say
# Computer Voice says: "bedroom"

# probabilities per class
whereami predict_proba
# {"bedroom": 0.99, "kitchen": 0.01}

If you want to delete some of the last lines, or the data in general, visit your $USER/.whereami folder.

Python

Any of the functionality is available in python as well. Generally speaking, commands can be imported:

from whereami import learn
from whereami import get_pipeline
from whereami import predict, predict_proba, crossval, locations

Accuracy

k Generally it should work really well. I've been able to learn using only 7 access points at home (test using access_points -n). At organizations you might see 70+.

Distance: anything around ~10 meters or more should get >99% accuracy.

If you're adventurous and you want to learn to distinguish between couch #1 and couch #2 (i.e. 2 meters apart), it is the most robust when you switch locations and train in turn. E.g. first in Spot A, then in Spot B then start again with A. Doing this in spot A, then spot B and then immediately using "predict" will yield spot B as an answer usually. No worries, the effect of this temporal overfitting disappears over time. And, in fact, this is only a real concern for the very short distances. Just take a sample after some time in both locations and it should become very robust.

Height: Surprisingly, vertical difference in location is typically even more distinct than horizontal differences.

Related Projects

  • The wherearehue project can be used to toggle Hue light bulbs based on the learned locations.

Almost entirely "copied" from:

https://github.com/schollz/find

That project used to be in Python, but is now written in Go. whereami is in Python with lessons learned implemented.

Tests

It's possible to locally run tests for python 2.7, 3.4 and 3.5 using tox.

git clone https://github.com/kootenpv/whereami
cd whereami
python setup.py install
tox
Owner
Pascal van Kooten
AI / Deep learning enthusiast
Pascal van Kooten
Simple and flexible ML workflow engine.

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable wit

Katana ML 295 Jan 06, 2023
Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Sean Zahller 1 Feb 04, 2022
Formulae is a Python library that implements Wilkinson's formulas for mixed-effects models.

formulae formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations li

34 Dec 21, 2022
BudouX is the successor to Budou, the machine learning powered line break organizer tool.

BudouX Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning powered line break organizer tool. It is standalone

Google 868 Jan 05, 2023
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 08, 2023
ml4ir: Machine Learning for Information Retrieval

ml4ir: Machine Learning for Information Retrieval | changelog Quickstart → ml4ir Read the Docs | ml4ir pypi | python ReadMe ml4ir is an open source li

Salesforce 77 Jan 06, 2023
Lightning ⚡️ fast forecasting with statistical and econometric models.

Nixtla Statistical ⚡️ Forecast Lightning fast forecasting with statistical and econometric models StatsForecast offers a collection of widely used uni

Nixtla 2.1k Dec 29, 2022
Time series changepoint detection

changepy Changepoint detection in time series in pure python Install pip install changepy Examples from changepy import pelt from cha

Rui Gil 92 Nov 08, 2022
Distributed scikit-learn meta-estimators in PySpark

sk-dist: Distributed scikit-learn meta-estimators in PySpark What is it? sk-dist is a Python package for machine learning built on top of scikit-learn

Ibotta 282 Dec 09, 2022
Hierarchical Time Series Forecasting using Prophet

htsprophet Hierarchical Time Series Forecasting using Prophet Credit to Rob J. Hyndman and research partners as much of the code was developed with th

Collin Rooney 131 Dec 02, 2022
neurodsp is a collection of approaches for applying digital signal processing to neural time series

neurodsp is a collection of approaches for applying digital signal processing to neural time series, including algorithms that have been proposed for the analysis of neural time series. It also inclu

NeuroDSP 224 Dec 02, 2022
🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code

Knock Knock A small library to get a notification when your training is complete or when it crashes during the process with two additional lines of co

Hugging Face 2.5k Jan 07, 2023
Evaluate on three different ML model for feature selection using Breast cancer data.

Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.

Tarek idrees 1 Mar 17, 2022
Pytools is an open source library containing general machine learning and visualisation utilities for reuse

pytools is an open source library containing general machine learning and visualisation utilities for reuse, including: Basic tools for API developmen

BCG Gamma 26 Nov 06, 2022
A Lucid Framework for Transparent and Interpretable Machine Learning Models.

Currently a Beta-Version lucidmode is an open-source, low-code and lightweight Python framework for transparent and interpretable machine learning mod

lucidmode 15 Aug 12, 2022
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

Generator of Rad Names from Decent Paper Acronyms

264 Nov 08, 2022
Implemented four supervised learning Machine Learning algorithms

Implemented four supervised learning Machine Learning algorithms from an algorithmic family called Classification and Regression Trees (CARTs), details see README_Report.

Teng (Elijah) Xue 0 Jan 31, 2022
Fast Fourier Transform-accelerated Interpolation-based t-SNE (FIt-SNE)

FFT-accelerated Interpolation-based t-SNE (FIt-SNE) Introduction t-Stochastic Neighborhood Embedding (t-SNE) is a highly successful method for dimensi

Kluger Lab 547 Dec 21, 2022
Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

GENDIS GENetic DIscovery of Shapelets In the time series classification domain, shapelets are small subseries that are discriminative for a certain cl

IDLab Services 90 Oct 28, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022