Graphsignal is a machine learning model monitoring platform.

Overview

Graphsignal Logger

License Version Downloads SaaS Status

Overview

Graphsignal is a machine learning model monitoring platform. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model performance and availability. Learn more at graphsignal.com.

Model Dashboard

Model Monitoring

  • Data monitoring. Monitor offline and online predictions for data validity and anomalies, data drift, model drift, exceptions, and more.
  • Automatic issue detection. Graphsignal automatically detects and notifies on issues with data and models, no need to manually setup and maintain complex rules.
  • Model framework and deployment agnostic. Monitor models serving online, in streaming apps, accessed via APIs or offline, running batch predictions.
  • Any scale and data size. Graphsignal logger only sends data statistics allowing it to scale with your application and data.
  • Data privacy. No raw data is sent to Graphsignal cloud, only data statistics and metadata.
  • Team access. Easily add team members to your account, as many as you need.

Documentation

See full documentation at graphsignal.com/docs.

Getting Started

1. Installation

Install the Python logger by running

pip install graphsignal

Or clone and install the GitHub repository.

git clone https://github.com/graphsignal/graphsignal.git
python setup.py install

Import the package in your application

import graphsignal

2. Configuration

Configure the logger by specifying your API key.

graphsignal.configure(api_key='my_api_key')

To get an API key, sign up for a free account at graphsignal.com. The key can then be found in your account's Settings / API Keys page.

3. Logging session

Get logging session for a deployed model identified by deployment name. Multiple sessions can be used in parallel in case of multi-model scrips or servers.

sess = graphsignal.session(deployment_name='model1_prod')

Set any model metadata, e.g. model version or model graph details.

sess.set_metadata('key1', 'val1')

4. Prediction Logging

Log single or batch model prediction/inference data. Pass prediction data according to supported data formats using list, dict, numpy.ndarray or pandas.DataFrame.

Computed data statistics are uploaded at certain intervals and on process exit.

sess.log_prediction(input_data={'feat1': 1, 'feat2': 2.0, 'feat3': 'yes'}, output_data=[0.1])

Report prediction exceptions and errors.

sess.log_exception(message='wrong format', extra_info={'feature': 'F1'})

See prediction logging API reference for full documentation.

5. Dashboards and Alerting

After prediction logging is setup, sign in to Graphsignal to check out data dashboards and set up alerting for automatically detected issues.

Example

import numpy as np
from tensorflow import keras
import graphsignal

# Configure Graphsignal logger
graphsignal.configure(api_key='my_api_key')

# Get logging session for the model
sess = graphsignal.session(deployment_name='mnist_prod')


model = keras.models.load_model('mnist_model.h5')

(_, _), (x_test, _) = keras.datasets.mnist.load_data()
x_test = x_test.astype("float32") / 255
x_test = np.expand_dims(x_test, -1)

try:
  output = model.predict(x_test)

  # See supported data formats description at 
  # https://graphsignal.com/docs/python-logger/supported-data-formats
  sess.log_prediction(output_data=output)
except:
  sess.log_exception(exc_info=True)

See more examples.

Performance

Graphsignal logger uses streaming algorithms for computing data statistics to ensure production-level performance and memory usage. Data statistics are computed for time windows and sent to Graphsignal by the background thread.

Since only data statistics is sent to our servers, there is no limitation on logged data size.

Security and Privacy

Graphsignal logger can only open outbound connections to log-api.graphsignal.com and send data, no inbound connections or commands are possible.

No raw data is sent to Graphsignal cloud, only data statistics and metadata.

Troubleshooting

To enable debug logging, add debug_mode=True to configure(). If the debug log doesn't give you any hints on how to fix a problem, please report it to our support team via your account.

In case of connection issues, please make sure outgoing connections to https://log-api.graphsignal.com are allowed.

A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al.

pyUpSet A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al. Contents Purpose How to install How it work

288 Jan 04, 2023
Stacked Generalization (Ensemble Learning)

Stacking (stacked generalization) Overview ikki407/stacking - Simple and useful stacking library, written in Python. User can use models of scikit-lea

Ikki Tanaka 192 Dec 23, 2022
A toolkit for geo ML data processing and model evaluation (fork of solaris)

An open source ML toolkit for overhead imagery. This is a beta version of lunular which may continue to develop. Please report any bugs through issues

Ryan Avery 4 Nov 04, 2021
Cohort Intelligence used to solve various mathematical functions

Cohort-Intelligence-for-Mathematical-Functions About Cohort Intelligence : Cohort Intelligence ( CI ) is an optimization technique. It attempts to mod

Aayush Khandekar 2 Oct 25, 2021
Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

SDK: Overview of the Kubeflow pipelines service Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on

Kubeflow 3.1k Jan 06, 2023
High performance Python GLMs with all the features!

High performance Python GLMs with all the features!

QuantCo 200 Dec 14, 2022
GAM timeseries modeling with auto-changepoint detection. Inspired by Facebook Prophet and implemented in PyMC3

pm-prophet Pymc3-based universal time series prediction and decomposition library (inspired by Facebook Prophet). However, while Faceook prophet is a

Luca Giacomel 314 Dec 25, 2022
Send rockets to Mars with artificial intelligence(Genetic algorithm) in python.

Send Rockets To Mars With AI Send rockets to Mars with artificial intelligence(Genetic algorithm) in python. Tools Python 3 EasyDraw How to Play Insta

Mohammad Dori 3 Jul 15, 2022
Graphsignal is a machine learning model monitoring platform.

Graphsignal is a machine learning model monitoring platform. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model

Graphsignal 143 Dec 05, 2022
Python library for multilinear algebra and tensor factorizations

scikit-tensor is a Python module for multilinear algebra and tensor factorizations

Maximilian Nickel 394 Dec 09, 2022
Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking and Jupyter notebook analysis.

sklearn-evaluation Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking, and Jupyter notebook analysis. Suppo

Eduardo Blancas 354 Dec 31, 2022
Python/Sage Tool for deriving Scattering Matrices for WDF R-Adaptors

R-Solver A Python tools for deriving R-Type adaptors for Wave Digital Filters. This code is not quite production-ready. If you are interested in contr

8 Sep 19, 2022
Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models.

Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models. Solve a variety of tasks with pre-trained models or finetune them in

Backprop 227 Dec 10, 2022
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021
A repository to work on Machine Learning course. Select an algorithm to classify writer's gender, of Hebrew texts.

MachineLearning A repository to work on Machine Learning course. Select an algorithm to classify writer's gender, of Hebrew texts. Tested algorithms:

Haim Adrian 1 Feb 01, 2022
Evaluate on three different ML model for feature selection using Breast cancer data.

Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.

Tarek idrees 1 Mar 17, 2022
Turning images into '9-pan' palettes using KMeans clustering from sklearn.

img2palette Turning images into '9-pan' palettes using KMeans clustering from sklearn. Requirements We require: Pillow, for opening and processing ima

Samuel Vidovich 2 Jan 01, 2022
Anytime Learning At Macroscale

On Anytime Learning At Macroscale Learning from sequential data dumps (key) Requirements Python 3.7 Pytorch 1.9.0 Hydra 1.1.0 (pip install hydra-core

Meta Research 8 Mar 29, 2022
MegFlow - Efficient ML solutions for long-tailed demands.

Efficient ML solutions for long-tailed demands.

旷视天元 MegEngine 371 Dec 21, 2022
Open MLOps - A Production-focused Open-Source Machine Learning Framework

Open MLOps - A Production-focused Open-Source Machine Learning Framework Open MLOps is a set of open-source tools carefully chosen to ease user experi

Data Revenue 590 Dec 28, 2022