This repo implements a Topological SLAM: Deep Visual Odometry with Long Term Place Recognition (Loop Closure Detection)

Overview

Introduction

This repo implements a topological SLAM system. Deep Visual Odometry (DF-VO) and Visual Place Recognition are combined to form the topological SLAM system.

Publications

  1. Visual Odometry Revisited: What Should Be Learnt?

  2. DF-VO: What Should Be Learnt for Visual Odometry?

  3. Scalable Place Recognition Under Appearance Change for Autonomous Driving

@INPROCEEDINGS{zhan2019dfvo,
  author={H. {Zhan} and C. S. {Weerasekera} and J. -W. {Bian} and I. {Reid}},
  booktitle={2020 IEEE International Conference on Robotics and Automation (ICRA)}, 
  title={Visual Odometry Revisited: What Should Be Learnt?}, 
  year={2020},
  volume={},
  number={},
  pages={4203-4210},
  doi={10.1109/ICRA40945.2020.9197374}}

@misc{zhan2021dfvo,
      title={DF-VO: What Should Be Learnt for Visual Odometry?}, 
      author={Huangying Zhan and Chamara Saroj Weerasekera and Jia-Wang Bian and Ravi Garg and Ian Reid},
      year={2021},
      eprint={2103.00933},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@inproceedings{doan2019scalable,
  title={Scalable place recognition under appearance change for autonomous driving},
  author={Doan, Anh-Dzung and Latif, Yasir and Chin, Tat-Jun and Liu, Yu and Do, Thanh-Toan and Reid, Ian},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={9319--9328},
  year={2019}
}

Demo:

Contents

  1. Requirements
  2. Prepare dataset
  3. Run example
  4. Result evaluation

Part 1. Requirements

This code was tested with Python 3.6, CUDA 10.0, Ubuntu 16.04, and PyTorch-1.0.

We suggest use Anaconda for installing the prerequisites.

cd envs
conda env create -f min_requirements.yml -p {ANACONDA_DIR/envs/topo_slam} # install prerequisites
conda activate topo_slam  # activate the environment [topo_slam]

Part 2. Download dataset and models

The main dataset used in this project is KITTI Driving Dataset. After downloaing the dataset, create a softlink in the current repo.

ln -s KITTI_ODOMETRY/sequences dataset/kitti_odom/odom_data

For our trained models, please visit here to download the models and save the models into the directory model_zoo/.

Part 3. Run example

# run default kitti setup
python main.py -d options/examples/default.yml  -r data/kitti_odom

More configuration examples can be found in configuration examples.

The result (trajectory pose file) is saved in result_dir defined in the configuration file. Please check Configuration Documentation for reference.

Part 4. Result evaluation

Please check here for evaluating the result.

License

Please check License file.

Acknowledgement

Some of the codes were borrowed from the excellent works of monodepth2, LiteFlowNet and pytorch-liteflownet. The borrowed files are licensed under their original license respectively.

Owner
Best of Australian Centre for Robotic Vision (ACRV)
A collection of open source projects capturing the best of the ACRV. See link below to further explore our projects.
Best of Australian Centre for Robotic Vision (ACRV)
Real-time stream processing for python

Streamz Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelin

Python Streamz 1.1k Dec 28, 2022
🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code

Knock Knock A small library to get a notification when your training is complete or when it crashes during the process with two additional lines of co

Hugging Face 2.5k Jan 07, 2023
TIANCHI Purchase Redemption Forecast Challenge

TIANCHI Purchase Redemption Forecast Challenge

Haorui HE 4 Aug 26, 2022
Getting Profit and Loss Make Easy From Binance

Getting Profit and Loss Make Easy From Binance I have been in Binance Automated Trading for some time and have generated a lot of transaction records,

17 Dec 21, 2022
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions

ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions, in particular, the posterior distributions of Bayesian models in

Computational Data Science Lab 182 Dec 31, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
SIMD-accelerated bitwise hamming distance Python module for hexidecimal strings

hexhamming What does it do? This module performs a fast bitwise hamming distance of two hexadecimal strings. This looks like: DEADBEEF = 1101111010101

Michael Recachinas 12 Oct 14, 2022
Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogramas anuais com spark, em pyspark e SQL!

Olá! Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogr

Henrique de Paula 10 Apr 04, 2022
This is an auto-ML tool specialized in detecting of outliers

Auto-ML tool specialized in detecting of outliers Description This tool will allows you, with a Dash visualization, to compare 10 models of machine le

1 Nov 03, 2021
Nixtla is an open-source time series forecasting library.

Nixtla Nixtla is an open-source time series forecasting library. We are helping data scientists and developers to have access to open source state-of-

Nixtla 401 Jan 08, 2023
Azure MLOps (v2) solution accelerators.

Azure MLOps (v2) solution accelerator Welcome to the MLOps (v2) solution accelerator repository! This project is intended to serve as the starting poi

Microsoft Azure 233 Jan 01, 2023
InfiniteBoost: building infinite ensembles with gradient descent

InfiniteBoost Code for a paper InfiniteBoost: building infinite ensembles with gradient descent (arXiv:1706.01109). A. Rogozhnikov, T. Likhomanenko De

Alex Rogozhnikov 183 Jan 03, 2023
This handbook accompanies the course: Machine Learning with Hung-Yi Lee

This handbook accompanies the course: Machine Learning with Hung-Yi Lee

RenChu Wang 472 Dec 31, 2022
Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

SDK: Overview of the Kubeflow pipelines service Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on

Kubeflow 3.1k Jan 06, 2023
PyHarmonize: Adding harmony lines to recorded melodies in Python

PyHarmonize: Adding harmony lines to recorded melodies in Python About To use this module, the user provides a wav file containing a melody, the key i

Julian Kappler 2 May 20, 2022
MLFlow in a Dockercontainer based on Azurite and Postgres

mlflow-azurite-postgres docker This is a MLFLow image which works with a postgres DB and a local Azure Blob Storage Instance (Azurite). This image is

2 May 29, 2022
Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Paul 3 Dec 06, 2022
Book Item Based Collaborative Filtering

Book-Item-Based-Collaborative-Filtering Collaborative filtering methods are used

Åžebnem 3 Jan 06, 2022
A Streamlit demo to interactively visualize Uber pickups in New York City

Streamlit Demo: Uber Pickups in New York City A Streamlit demo written in pure Python to interactively visualize Uber pickups in New York City. View t

Streamlit 230 Dec 28, 2022
Simple and flexible ML workflow engine.

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable wit

Katana ML 295 Jan 06, 2023