Repositório para o #alurachallengedatascience1

Overview

1° Challenge de Dados - Alura

Badge em Desenvolvimento

A Alura Voz é uma empresa de telecomunicação que nos contratou para atuar como cientistas de dados na equipe de vendas. Logo na primeira semana, a liderança nos informa que é muito necessário realizar um estudo quanto ao Churn da empresa. É explicado que o churn indica se um cliente cancelou ou não o contrato com a empresa, e também que, nos casos de perda do cliente a empresa também perde faturamento, o que ocasiona prejuizos na receita final.

Desse modo, nossa liderança informa que temos 4 semanas para buscar uma alternativa que possa minimizar a saída de clientes e nos entrega um conjunto de dados da Alura Voz que contém diversas informações sobre os clientes e também informa se eles deixaram ou não a empresa.

Sabemos que, antes de pensar em qualquer alternaiva, é preciso entender as informações que recebemos e, após uma pequena reunião, concluímos que na primeira semana nós nos dedicaríamos a entender o banco de dados, descobrir os tipos de dados, verificar a existencia de valores incoerentos e corrigi-los caso seja necessário.

Semana 1 - Limpeza dos dados

Dados

Ao observar a Base de dados da Alura Voz, verificamos que essa é uma base disponibilizada via API em formato JSON com várias camandas de dados.

Junnto a esses dados também foi disponibilizado o dicionário dos dados que nele contém todas as informações sobre as colunas do banco de dados.

Nela, além da informação se o cliente deixou ou não a empresa, também contém:

Cliente:

  • gender: gênero (masculino e feminino)
  • SeniorCitizen: informação sobre um cliente ter ou não idade igual ou maior que 65 anos
  • Partner: se o cliente possui ou não um parceiro ou parceira
  • Dependents: se o cliente possui ou não dependentes

Serviço de telefonia

  • tenure: meses de contrato do cliente
  • PhoneService: assinatura de serviço telefônico
  • MultipleLines: assisnatura de mais de uma linha de telefone

Serviço de internet

  • InternetService: assinatura de um provedor internet
  • OnlineSecurity: assinatura adicional de segurança online
  • OnlineBackup: assinatura adicional de backup online
  • DeviceProtection: assinatura adicional de proteção no dispositivo
  • TechSupport: assinatura adicional de suporte técnico, menos tempo de espera
  • StreamingTV: assinatura de TV a cabo
  • StreamingMovies: assinatura de streaming de filmes

Contrato

  • Contract: tipo de contrato
  • PaperlessBilling: se o cliente prefere receber online a fatura
  • PaymentMethod: forma de pagamento
  • Charges.Monthly: total de todos os serviços do cliente por mês
  • Charges.Total: total gasto pelo cliente

Tendo essas informações entendemos nossos dados e, assim, podemos realizar uma análise mais técnica, buscando entender JSON, os dados e realizar o tratamento deles.

Todo o desenvolvimento feito na nossa 1° semana pode ser observado no notebook semana 1.

#alura #alurachallengedatascience1

Conheça a equipe

Sthefanie Monica

Bacharela em Engenharia Elétrica pela UTFPR e atualmente instrutora de Data Science na Alura. Durante o período de graduação realizei diversas pesquisas voltadas à redes neurais e visão computacional, inclusive um período de pesquisa no Hospital Israelita Albert Einstein. No meu tempo livre adoro jogar, seja boardgames ou jogos eletrônicos, e amo conhecer novos lugares e pessoas, então estou sempre planejando a próxima viagem.

Ana Clara

Sou bacharela em Informática Biomédica e atualmente mestranda em Bioengenharia, ambas pela USP. Atuo como pesquisadora FAPESP e instrutora na Escola de Dados da Alura. Já realizei estágio no Hospital das Clínicas-FMRP, sou cofundadora e atual conselheira do grupo Data Girls. Possuo grande interesse na área de Ciência de Dados e Inteligência Artificial com aplicações em diferentes áreas de negócio. Além disso sou apaixonada por livros, séries, games e um bom café.

Bruno Raphaell

Estudante de engenharia elétrica na Universidade Federal do Piauí (UFPI) e atualmente scuba de Data Science na Alura. Apaixonado por música, filmes biográficos e programação. No tempo livre tento sair do prata no LoL, tocar algum instrumento e assistir filmes e séries.

João Miranda

Bacharel em Matemática pela UFMG e cursando MBA em Data Science e Analytics na USP/Esalq. Atualmente sou monitor na Escola de Dados do grupo Alura. Gosta muito de livros, jogos eletrônicos, boardgames e tiro com arco.

Mirla Costa

Graduanda em Engenharia elétrica pela Universidade Federal do Piauí com pesquisa focada em Aprendizado de Máquina e Inteligência Computacional. Atuo como Scuba na escola de Data Science da Alura sempre amei muito programar, ensinar de trabalhar com tecnologia. Meu tempo livre dedico a brincar com meus animias, assistir animações e séries, além de jogar RPG de mesa.

Owner
Sthe Monica
Instrutora da Alura, engenheira, player de RPG, joguinhos online e apaixonada por tecnologia desde pequena.
Sthe Monica
Forecast dynamically at scale with this unique package. pip install scalecast

🌄 Scalecast: Dynamic Forecasting at Scale About This package uses a scaleable forecasting approach in Python with common scikit-learn and statsmodels

Michael Keith 158 Jan 03, 2023
pymc-learn: Practical Probabilistic Machine Learning in Python

pymc-learn: Practical Probabilistic Machine Learning in Python Contents: Github repo What is pymc-learn? Quick Install Quick Start Index What is pymc-

pymc-learn 196 Dec 07, 2022
Cohort Intelligence used to solve various mathematical functions

Cohort-Intelligence-for-Mathematical-Functions About Cohort Intelligence : Cohort Intelligence ( CI ) is an optimization technique. It attempts to mod

Aayush Khandekar 2 Oct 25, 2021
Uses WiFi signals :signal_strength: and machine learning to predict where you are

Uses WiFi signals and machine learning (sklearn's RandomForest) to predict where you are. Even works for small distances like 2-10 meters.

Pascal van Kooten 5k Jan 09, 2023
MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training

MosaicML Composer MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training. We aim to ease th

MosaicML 2.8k Jan 06, 2023
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

802 Jan 01, 2023
Predicting diabetes over a five year period using logistic regression and the Pima First-Nation dataset

Diabetes This script uses the Pima First Nations dataset to create a model to predict whether or not an individual will develop Diabetes Mellitus Type

1 Mar 28, 2022
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
Iris species predictor app is used to classify iris species created using python's scikit-learn, fastapi, numpy and joblib packages.

Iris Species Predictor Iris species predictor app is used to classify iris species using their sepal length, sepal width, petal length and petal width

Siva Prakash 5 Apr 05, 2022
A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model

A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model (Random Forest Classifier Model ) that helps the user to identify whether someone is showing positive Covid sym

Priyansh Sharma 2 Oct 06, 2022
Pandas DataFrames and Series as Interactive Tables in Jupyter

Pandas DataFrames and Series as Interactive Tables in Jupyter Star Turn pandas DataFrames and Series into interactive datatables in both your notebook

Marc Wouts 364 Jan 04, 2023
Implemented four supervised learning Machine Learning algorithms

Implemented four supervised learning Machine Learning algorithms from an algorithmic family called Classification and Regression Trees (CARTs), details see README_Report.

Teng (Elijah) Xue 0 Jan 31, 2022
ML-powered Loan-Marketer Customer Filtering Engine

In Loan-Marketing business employees are required to call the user's to buy loans of several fields and in several magnitudes. If employees are calling everybody in the network it is also very length

Sagnik Roy 13 Jul 02, 2022
This is my implementation on the K-nearest neighbors algorithm from scratch using Python

K Nearest Neighbors (KNN) algorithm In this Machine Learning world, there are various algorithms designed for classification problems such as Logistic

sonny1902 1 Jan 08, 2022
whylogs: A Data and Machine Learning Logging Standard

whylogs: A Data and Machine Learning Logging Standard whylogs is an open source standard for data and ML logging whylogs logging agent is the easiest

WhyLabs 2k Jan 06, 2023
Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational model)

Sum-Square_Error-Business-Analytical-Tool- Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational m

om Podey 1 Dec 03, 2021
100 Days of Machine and Deep Learning Code

💯 Days of Machine Learning and Deep Learning Code MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Cluste

Tanishq Gautam 66 Nov 02, 2022
Pytools is an open source library containing general machine learning and visualisation utilities for reuse

pytools is an open source library containing general machine learning and visualisation utilities for reuse, including: Basic tools for API developmen

BCG Gamma 26 Nov 06, 2022
Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

2 Jun 14, 2022
scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly.

scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly. Its main purpose is the transformation of bilinear forms into sparse matrices and linear forms into vectors.

Tom Gustafsson 297 Dec 13, 2022