Distributed deep learning on Hadoop and Spark clusters.

Overview

Note: we're lovingly marking this project as Archived since we're no longer supporting it. You are welcome to read the code and fork your own version of it and continue to use this code under the terms of the project license.

CaffeOnSpark

What's CaffeOnSpark?

CaffeOnSpark brings deep learning to Hadoop and Spark clusters. By combining salient features from deep learning framework Caffe and big-data frameworks Apache Spark and Apache Hadoop, CaffeOnSpark enables distributed deep learning on a cluster of GPU and CPU servers.

As a distributed extension of Caffe, CaffeOnSpark supports neural network model training, testing, and feature extraction. Caffe users can now perform distributed learning using their existing LMDB data files and minorly adjusted network configuration (as illustrated).

CaffeOnSpark is a Spark package for deep learning. It is complementary to non-deep learning libraries MLlib and Spark SQL. CaffeOnSpark's Scala API provides Spark applications with an easy mechanism to invoke deep learning (see sample) over distributed datasets.

CaffeOnSpark was developed by Yahoo for large-scale distributed deep learning on our Hadoop clusters in Yahoo's private cloud. It's been in use by Yahoo for image search, content classification and several other use cases.

Why CaffeOnSpark?

CaffeOnSpark provides some important benefits (see our blog) over alternative deep learning solutions.

  • It enables model training, test and feature extraction directly on Hadoop datasets stored in HDFS on Hadoop clusters.
  • It turns your Hadoop or Spark cluster(s) into a powerful platform for deep learning, without the need to set up a new dedicated cluster for deep learning separately.
  • Server-to-server direct communication (Ethernet or InfiniBand) achieves faster learning and eliminates scalability bottleneck.
  • Caffe users' existing datasets (e.g. LMDB) and configurations could be applied for distributed learning without any conversion needed.
  • High-level API empowers Spark applications to easily conduct deep learning.
  • Incremental learning is supported to leverage previously trained models or snapshots.
  • Additional data formats and network interfaces could be easily added.
  • It can be easily deployed on public cloud (ex. AWS EC2) or a private cloud.

Using CaffeOnSpark

Please check CaffeOnSpark wiki site for detailed documentations such as building instruction, API reference and getting started guides for standalone cluster and AWS EC2 cluster.

  • Batch sizes specified in prototxt files are per device.
  • Memory layers should not be shared among GPUs, and thus "share_in_parallel: false" is required for layer configuration.

Building for Spark 2.X

CaffeOnSpark supports both Spark 1.x and 2.x. For Spark 2.0, our default settings are:

  • spark-2.0.0
  • hadoop-2.7.1
  • scala-2.11.7 You may want to adjust them in caffe-grid/pom.xml.

Mailing List

Please join CaffeOnSpark user group for discussions and questions.

License

The use and distribution terms for this software are covered by the Apache 2.0 license. See LICENSE file for terms.

Owner
Yahoo
This organization is the home to many of the active open source projects published by engineers at Yahoo Inc.
Yahoo
Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

EconML/CausalML KDD 2021 Tutorial 124 Dec 28, 2022
About Solve CTF offline disconnection problem - based on python3's small crawler

About Solve CTF offline disconnection problem - based on python3's small crawler, support keyword search and local map bed establishment, currently support Jianshu, xianzhi,anquanke,freebuf,seebug

天河 32 Oct 25, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 03, 2023
Pragmatic AI Labs 421 Dec 31, 2022
Random Forest Classification for Neural Subtypes

Random Forest classifier for neural subtypes extracted from extracellular recordings from human brain organoids.

Michael Zabolocki 1 Jan 31, 2022
Tools for mathematical optimization region

Tools for mathematical optimization region

林景 15 Nov 30, 2022
Bonsai: Gradient Boosted Trees + Bayesian Optimization

Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.

24 Oct 27, 2022
SynapseML - an open source library to simplify the creation of scalable machine learning pipelines

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
Visualize classified time series data with interactive Sankey plots in Google Earth Engine

sankee Visualize changes in classified time series data with interactive Sankey plots in Google Earth Engine Contents Description Installation Using P

Aaron Zuspan 76 Dec 15, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Jan 09, 2023
Machine Learning for Time-Series with Python.Published by Packt

Machine-Learning-for-Time-Series-with-Python Become proficient in deriving insights from time-series data and analyzing a model’s performance Links Am

Packt 124 Dec 28, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Jan 06, 2023
Deep Survival Machines - Fully Parametric Survival Regression

Package: dsm Python package dsm provides an API to train the Deep Survival Machines and associated models for problems in survival analysis. The under

Carnegie Mellon University Auton Lab 10 Dec 30, 2022
LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading

LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading. The framework simplify development, testing, deployment, analysis and training algo trading strategies

Amichay Oren 458 Dec 24, 2022
A machine learning model for Covid case prediction

CovidcasePrediction A machine learning model for Covid case prediction Problem Statement Using regression algorithms we can able to track the active c

VijayAadhithya2019rit 1 Feb 02, 2022
using Machine Learning Algorithm to classification AppleStore application

AppleStore-classification-with-Machine-learning-Algo- using Machine Learning Algorithm to classification AppleStore application. the first step : 1: p

Mohammed Hussien 2 May 02, 2022
Generate music from midi files using BPE and markov model

Generate music from midi files using BPE and markov model

Aditya Khadilkar 37 Oct 24, 2022
Module is created to build a spam filter using Python and the multinomial Naive Bayes algorithm.

Naive-Bayes Spam Classificator Module is created to build a spam filter using Python and the multinomial Naive Bayes algorithm. Main goal is to code a

Viktoria Maksymiuk 1 Jun 27, 2022
Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku

Puesta en Producción de un modelo de aprendizaje automático con Flask y Heroku L

Jesùs Guillen 1 Jun 03, 2022
Customers Segmentation with RFM Scores and K-means

Customer Segmentation with RFM Scores and K-means RFM Segmentation table: K-Means Clustering: Business Problem Rule-based customer segmentation machin

5 Aug 10, 2022