Distributed deep learning on Hadoop and Spark clusters.

Overview

Note: we're lovingly marking this project as Archived since we're no longer supporting it. You are welcome to read the code and fork your own version of it and continue to use this code under the terms of the project license.

CaffeOnSpark

What's CaffeOnSpark?

CaffeOnSpark brings deep learning to Hadoop and Spark clusters. By combining salient features from deep learning framework Caffe and big-data frameworks Apache Spark and Apache Hadoop, CaffeOnSpark enables distributed deep learning on a cluster of GPU and CPU servers.

As a distributed extension of Caffe, CaffeOnSpark supports neural network model training, testing, and feature extraction. Caffe users can now perform distributed learning using their existing LMDB data files and minorly adjusted network configuration (as illustrated).

CaffeOnSpark is a Spark package for deep learning. It is complementary to non-deep learning libraries MLlib and Spark SQL. CaffeOnSpark's Scala API provides Spark applications with an easy mechanism to invoke deep learning (see sample) over distributed datasets.

CaffeOnSpark was developed by Yahoo for large-scale distributed deep learning on our Hadoop clusters in Yahoo's private cloud. It's been in use by Yahoo for image search, content classification and several other use cases.

Why CaffeOnSpark?

CaffeOnSpark provides some important benefits (see our blog) over alternative deep learning solutions.

  • It enables model training, test and feature extraction directly on Hadoop datasets stored in HDFS on Hadoop clusters.
  • It turns your Hadoop or Spark cluster(s) into a powerful platform for deep learning, without the need to set up a new dedicated cluster for deep learning separately.
  • Server-to-server direct communication (Ethernet or InfiniBand) achieves faster learning and eliminates scalability bottleneck.
  • Caffe users' existing datasets (e.g. LMDB) and configurations could be applied for distributed learning without any conversion needed.
  • High-level API empowers Spark applications to easily conduct deep learning.
  • Incremental learning is supported to leverage previously trained models or snapshots.
  • Additional data formats and network interfaces could be easily added.
  • It can be easily deployed on public cloud (ex. AWS EC2) or a private cloud.

Using CaffeOnSpark

Please check CaffeOnSpark wiki site for detailed documentations such as building instruction, API reference and getting started guides for standalone cluster and AWS EC2 cluster.

  • Batch sizes specified in prototxt files are per device.
  • Memory layers should not be shared among GPUs, and thus "share_in_parallel: false" is required for layer configuration.

Building for Spark 2.X

CaffeOnSpark supports both Spark 1.x and 2.x. For Spark 2.0, our default settings are:

  • spark-2.0.0
  • hadoop-2.7.1
  • scala-2.11.7 You may want to adjust them in caffe-grid/pom.xml.

Mailing List

Please join CaffeOnSpark user group for discussions and questions.

License

The use and distribution terms for this software are covered by the Apache 2.0 license. See LICENSE file for terms.

Owner
Yahoo
This organization is the home to many of the active open source projects published by engineers at Yahoo Inc.
Yahoo
Lseng-iseng eksplor Machine Learning dengan menggunakan library Scikit-Learn

Kalo dengar istilah ML, biasanya rada ambigu. Soalnya punya beberapa kepanjangan, seperti Mobile Legend, Makan Lontong, Ma**ng L*v* dan lain-lain. Tapi pada repo ini membahas Machine Learning :)

Alfiyanto Kondolele 1 Apr 06, 2022
Python-based implementations of algorithms for learning on imbalanced data.

ND DIAL: Imbalanced Algorithms Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learn

DIAL | Notre Dame 220 Dec 13, 2022
Empyrial is a Python-based open-source quantitative investment library dedicated to financial institutions and retail investors

By Investors, For Investors. Want to read this in Chinese? Click here Empyrial is a Python-based open-source quantitative investment library dedicated

Santosh 640 Dec 31, 2022
Machine Learning University: Accelerated Natural Language Processing Class

Machine Learning University: Accelerated Natural Language Processing Class This repository contains slides, notebooks and datasets for the Machine Lea

AWS Samples 2k Jan 01, 2023
Module for statistical learning, with a particular emphasis on time-dependent modelling

Operating system Build Status Linux/Mac Windows tick tick is a Python 3 module for statistical learning, with a particular emphasis on time-dependent

X - Data Science Initiative 410 Dec 14, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Dec 29, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
2D fluid simulation implementation of Jos Stam paper on real-time fuild dynamics, including some suggested extensions.

Fluid Simulation Usage Download this repo and store it in your computer. Open a terminal and go to the root directory of this folder. Make sure you ha

Mariana Ávalos Arce 5 Dec 02, 2022
Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Amplo 10 May 15, 2022
MaD GUI is a basis for graphical annotation and computational analysis of time series data.

MaD GUI Machine Learning and Data Analytics Graphical User Interface MaD GUI is a basis for graphical annotation and computational analysis of time se

Machine Learning and Data Analytics Lab FAU 10 Dec 19, 2022
Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters

Somoclu Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs, it is able to rely on MPI for distributing

Peter Wittek 239 Nov 10, 2022
Napari sklearn decomposition

napari-sklearn-decomposition A simple plugin to use with napari This napari plug

1 Sep 01, 2022
Evaluate on three different ML model for feature selection using Breast cancer data.

Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.

Tarek idrees 1 Mar 17, 2022
Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill

Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill This is a port of the amazing openskill.js package

Open Debates Project 156 Dec 14, 2022
Distributed Tensorflow, Keras and PyTorch on Apache Spark/Flink & Ray

A unified Data Analytics and AI platform for distributed TensorFlow, Keras and PyTorch on Apache Spark/Flink & Ray What is Analytics Zoo? Analytics Zo

2.5k Dec 28, 2022
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

Neuron AI 5 Jun 18, 2022
Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about Machine Learning

Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about Machine Learning

Microsoft 43.4k Jan 04, 2023
The easy way to combine mlflow, hydra and optuna into one machine learning pipeline.

mlflow_hydra_optuna_the_easy_way The easy way to combine mlflow, hydra and optuna into one machine learning pipeline. Objective TODO Usage 1. build do

shibuiwilliam 9 Sep 09, 2022
PLUR is a collection of source code datasets suitable for graph-based machine learning.

PLUR (Programming-Language Understanding and Repair) is a collection of source code datasets suitable for graph-based machine learning. We provide scripts for downloading, processing, and loading the

Google Research 76 Nov 25, 2022
2021 Machine Learning Security Evasion Competition

2021 Machine Learning Security Evasion Competition This repository contains code samples for the 2021 Machine Learning Security Evasion Competition. P

Fabrício Ceschin 8 May 01, 2022