It is a forest of random projection trees

Overview

rpforest

rpforest

CircleCI

rpforest is a Python library for approximate nearest neighbours search: finding points in a high-dimensional space that are close to a given query point in a fast but approximate manner.

rpforest differs from alternative ANN packages such as annoy by not requiring the storage of all the vectors indexed in the model. Used in this way, rpforest serves to produce a list of candidate ANNs for use by a further service where point vectors are stored (for example, a relational database).

How it works

It works by building a forest of N binary random projection trees.

In each tree, the set of training points is recursively partitioned into smaller and smaller subsets until a leaf node of at most M points is reached. Each parition is based on the cosine of the angle the points make with a randomly drawn hyperplane: points whose angle is smaller than the median angle fall in the left partition, and the remaining points fall in the right partition.

The resulting tree has predictable leaf size (no larger than M) and is approximately balanced because of median splits, leading to consistent tree traversal times.

Querying the model is accomplished by traversing each tree to the query point's leaf node to retrieve ANN candidates from that tree, then merging them and sorting by distance to the query point.

Installation

  1. Install numpy first.
  2. Install rpforest using pip: pip install rpforest

Usage

Fitting

Model fitting is straightforward:

from rpforest import RPForest

model = RPForest(leaf_size=50, no_trees=10)
model.fit(X)

The speed-precision tradeoff is governed by the leaf_size and no_trees parameters. Increasing leaf_size leads the model to produce shallower trees with larger leaf nodes; increasing no_trees fits more trees.

In-memory queries

Where the entire set of points can be kept in memory, rpforest supports in-memory ANN queries. After fitting, ANNs can be obtained by calling:

nns = model.query(x_query, 10)

Return nearest neighbours for vector x by first retrieving candidate NNs from x's leaf nodes, then merging them and sorting by cosine similarity with x. At most no_trees * leaf_size NNs will can be returned.

Candidate queries

rpforest can support indexing and candidate ANN queries on datasets larger than would fit in available memory. This is accomplished by first fitting the model on a subset of the data, then indexing a larger set of data into the fitted model:

from rpforest import RPForest

model = RPForest(leaf_size=50, no_trees=10)
model.fit(X_train)

model.clear()  # Deletes X_train vectors

for point_id, x in get_x_vectors():
     model.index(point_id, x)

nns = model.get_candidates(x_query, 10)

Model persistence

Model persistence is achieved simply by pickling and unpickling.

model = pickle.loads(pickle.dumps(model))

Performance

Erik Bernhardsson, the author of annoy, maintains an ANN performance shootout repository, comparing a number of Python ANN packages.

On the GloVe cosine distance benchmark, rpforest is not as fast as highly optimised C and C++ packages like FLANN and annoy. However, it far outerpforms scikit-learn's LSHForest and panns.

Performance

Development

Pull requests are welcome. To install for development:

  1. Clone the rpforest repository: git clone [email protected]:lyst/rpforest.git
  2. Install it for development using pip: cd rpforest && pip install -e .
  3. You can run tests by running python setupy.py test.

When making changes to the .pyx extension files, you'll need to run python setup.py cythonize in order to produce the extension .cpp files before running pip install -e ..

Comments
  • Is rpforest supports custom similarity/distance function

    Is rpforest supports custom similarity/distance function

    hi, @maciejkula , According to your paper titled "Metadata Embeddings for User and Item Cold-start Recommendations", lyst generate recommendation using lightfm and some kind of ANN algorithm. So I came to rpforest in lyst's repository and I think maybe that's exactly the ANN. Now Suppose that we have trained a lightfm model, include embeddings and bias. It seems that it is still hard to rapidly generate top-k recommendation using rpforest, Since as Readme said, rpforest is based on cosine similarity, however, the score for a user-item pair in lightfm is the sum of a dot product of two embeddings and two bias. So my question is:

    Is rpforest supports custom similarity/distance function, or some other way can achieve top-k recommendation?

    thanks jianyi

    opened by hiyijian 10
  • Compile error when installing rpforest

    Compile error when installing rpforest

    In file included from rpforest/rpforest_fast.cpp:271:
    
    In file included from /usr/local/lib/python2.7/site-packages/numpy/core/include/numpy/arrayobject.h:4:
    
    In file included from /usr/local/lib/python2.7/site-packages/numpy/core/include/numpy/ndarrayobject.h:17:
    
    In file included from /usr/local/lib/python2.7/site-packages/numpy/core/include/numpy/ndarraytypes.h:1804:
    
    /usr/local/lib/python2.7/site-packages/numpy/core/include/numpy/npy_1_7_deprecated_api.h:15:2: warning: "Using deprecated NumPy API, disable it by "          "#defining NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-W#warnings]
    
    #warning "Using deprecated NumPy API, disable it by " \
    
     ^
    
    rpforest/rpforest_fast.cpp:5727:28: error: no member named 'shrink_to_fit' in 'std::vector<int, std::allocator<int> >'
    
        __pyx_v_node->indices->shrink_to_fit();
    
        ~~~~~~~~~~~~~~~~~~~~~  ^
    
    rpforest/rpforest_fast.cpp:5940:28: error: no member named 'shrink_to_fit' in 'std::vector<int, std::allocator<int> >'
    
        __pyx_v_node->indices->shrink_to_fit();
    
        ~~~~~~~~~~~~~~~~~~~~~  ^
    
    1 warning and 2 errors generated.
    
    error: command 'gcc' failed with exit status 1
    
    opened by delip 10
  • Does windows support the libs

    Does windows support the libs

    In win7 environment, when i install rpforest ,i met the problem. i use vs2015. the complie error informatios: C:\Users\juine\AppData\Local\Programs\Common\Microsoft\Visual C++ for Python \9.0\VC\Bin\cl.exe /c logo /Ox /MD /W3 /GS- /DNDEBUG -ID:\Python27\lib\site-p ackages\numpy\core\include -ID:\Python27\include -ID:\Python27\PC /Tprpforest/rp forest_fast.cpp /Fobuild\temp.win32-2.7\Release\rpforest/rpforest_fast.obj -ffas t-math cl : Command line warning D9002 : ignoring unknown option '-ffast-math' rpforest_fast.cpp d:\python27\lib\site-packages\numpy\core\include\numpy\npy_1_7_deprecated_ap i.h(12) : Warning Msg: Using deprecated NumPy API, disable it by #defining NPY_N O_DEPRECATED_API NPY_1_7_API_VERSION rpforest/rpforest_fast.cpp(271) : fatal error C1083: Cannot open include fil e: 'stdint.h': No such file or directory error: command 'C:\Users\juine\AppData\Local\Programs\Common\Microsof t\Visual C++ for Python\9.0\VC\Bin\cl.exe' failed with exit status 2

    opened by juine 4
  • C++ error with python 3.5

    C++ error with python 3.5

    Hello, I'm trying to fir an rpforet module on a big matrix (3000000 x 300) in python 3.5 on OS X 10.11 and I get the following error:

    Traceback (most recent call last):
      File "rpforest_test.py", line 29, in <module>
        index.fit(model.syn0)
      File "/usr/local/lib/python3.5/site-packages/rpforest/rpforest.py", line 81, in fit
        tree.make_tree(self._X)
      File "rpforest/rpforest_fast.pyx", line 237, in rpforest.rpforest_fast.Tree.make_tree (rpforest/rpforest_fast.cpp:3896)
    ValueError: Buffer dtype mismatch, expected 'double' but got 'float'
    
    opened by w4nderlust 2
  • Errors installing rpforest in conda environment on Mac OS X

    Errors installing rpforest in conda environment on Mac OS X

    OS/compiler details:

    OS X version: 10.11.2 (El Capitan)

    $ clang --version
    Apple LLVM version 7.0.2 (clang-700.1.81)
    Target: x86_64-apple-darwin15.2.0
    Thread model: posix
    

    gcc is an alias for clang.

    Installing rpforest in a fresh virtualenv environment works fine:

    $ mkvirtualenv rpfenv
    ... python 3.4 env built ...
    (rpfenv)$ pip install numpy
    ... numpy 1.10.2 installed ...
    (rpfenv)$ pip install rpforest
    ... rpforest 1.1 installed ...
    

    rpforest_fast was compiled successfully with:

    clang -Wno-unused-result -fno-common -dynamic -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -I/Users/dsc/.virtualenvs/rpfenv/lib/python3.4/site-packages/numpy/core/include -I/usr/local/Cellar/python3/3.4.3_2/Frameworks/Python.framework/Versions/3.4/include/python3.4m -c rpforest/rpforest_fast.cpp -o build/temp.macosx-10.10-x86_64-3.4/rpforest/rpforest_fast.o -std=c++11
    

    Trying to do the same in a conda environment results in compilation errors however:

    $ conda create -n rpfenv2 python=3.4
    ... python 3.4 env built ...
    $ source activate rpfenv2
    (rpfenv2)$ pip install numpy
    ... numpy 1.10.2 installed ...
    (rpfenv2)$ pip install rpforest
    

    rpforest 1.1 is downloaded, but compilation fails. Compilation command:

    clang -fno-strict-aliasing -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -I/Users/dsc/miniconda3/envs/rpfenv2/include -arch x86_64 -I/Users/dsc/miniconda3/envs/rpfenv2/lib/python3.4/site-packages/numpy/core/include -I/Users/dsc/miniconda3/envs/rpfenv2/include/python3.4m -c rpforest/rpforest_fast.cpp -o build/temp.macosx-10.5-x86_64-3.4/rpforest/rpforest_fast.o -std=c++11
    

    Compiler errors:

      In file included from rpforest/rpforest_fast.cpp:271:
      In file included from /Users/dsc/miniconda3/envs/rpfenv2/lib/python3.4/site-packages/numpy/core/include/numpy/arrayobject.h:4:
      In file included from /Users/dsc/miniconda3/envs/rpfenv2/lib/python3.4/site-packages/numpy/core/include/numpy/ndarrayobject.h:18:
      In file included from /Users/dsc/miniconda3/envs/rpfenv2/lib/python3.4/site-packages/numpy/core/include/numpy/ndarraytypes.h:1781:
      /Users/dsc/miniconda3/envs/rpfenv2/lib/python3.4/site-packages/numpy/core/include/numpy/npy_1_7_deprecated_api.h:15:2: warning: "Using deprecated NumPy API, disable it by "          "#defining NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-W#warnings]
      #warning "Using deprecated NumPy API, disable it by " \
       ^
      rpforest/rpforest_fast.cpp:5727:28: error: no member named 'shrink_to_fit' in 'std::vector<int, std::allocator<int> >'
          __pyx_v_node->indices->shrink_to_fit();
          ~~~~~~~~~~~~~~~~~~~~~  ^
      rpforest/rpforest_fast.cpp:5940:28: error: no member named 'shrink_to_fit' in 'std::vector<int, std::allocator<int> >'
          __pyx_v_node->indices->shrink_to_fit();
          ~~~~~~~~~~~~~~~~~~~~~  ^
      1 warning and 2 errors generated.
      error: command 'clang' failed with exit status 1
    
    opened by davechallis 1
  • label points that are being fit()

    label points that are being fit()

    I'm not sure if the implementation already supports this, but is it possible assign a label with every point with fit(), so when there is a query, I can identify the neighbors by the labels?

    opened by delip 1
  • CircleCI 2.0, tox, py35+ tests and support

    CircleCI 2.0, tox, py35+ tests and support

    Decided to use tox, so that you can:

    • run tests locally in multiple python versions
    • have a consistent testing platform across CI and local environment

    Also:

    • updated readme
    • refactored setup.py ... made it not a fatal exception if python setup.py is run without an installed numpy
    • fixed flake8 issues
    • black-ified code
    • fixed tests code to support py35+
    • updated cpp library with the latest cython 0.29.14 (previously 0.23.4)
    opened by iserko 0
  • Reuse hyperplanes

    Reuse hyperplanes

    This PR makes all interior nodes of a tree at a given depth now use the same projection hyperplane. This drastically reduces the memory footprint of the tree without affecting the guarantees of the data structure (which relies on the hyperplanes being independently drawn _ between_ the trees in the forest).

    opened by maciejkula 0
  • Raising error when tree already exists

    Raising error when tree already exists

    Referencing https://github.com/lyst/rpforest/blob/master/rpforest/rpforest.py#L59

    The tree already exists, so is there a way to handle this gracefully instead of raising an error?

    opened by RitwikGupta 0
Owner
Lyst
Your World of Fashion
Lyst
SIMD-accelerated bitwise hamming distance Python module for hexidecimal strings

hexhamming What does it do? This module performs a fast bitwise hamming distance of two hexadecimal strings. This looks like: DEADBEEF = 1101111010101

Michael Recachinas 12 Oct 14, 2022
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just

wenqi 2 Jun 26, 2022
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.

TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models

538 Jan 01, 2023
vortex particles for simulating smoke in 2d

vortex-particles-method-2d vortex particles for simulating smoke in 2d -vortexparticles_s

12 Aug 23, 2022
Machine Learning e Data Science com Python

Machine Learning e Data Science com Python Arquivos do curso de Data Science e Machine Learning com Python na Udemy, cliqe aqui para acessá-lo. O prin

Renan Barbosa 1 Jan 27, 2022
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster

[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm

Daniel Han-Chen 1.4k Jan 01, 2023
LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading

LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading. The framework simplify development, testing, deployment, analysis and training algo trading strategies

Amichay Oren 458 Dec 24, 2022
PLUR is a collection of source code datasets suitable for graph-based machine learning.

PLUR (Programming-Language Understanding and Repair) is a collection of source code datasets suitable for graph-based machine learning. We provide scripts for downloading, processing, and loading the

Google Research 76 Nov 25, 2022
STUMPY is a powerful and scalable Python library for computing a Matrix Profile, which can be used for a variety of time series data mining tasks

STUMPY STUMPY is a powerful and scalable library that efficiently computes something called the matrix profile, which can be used for a variety of tim

TD Ameritrade 2.5k Jan 06, 2023
Crunchdao - Python API for the Crunchdao machine learning tournament

Python API for the Crunchdao machine learning tournament Interact with the Crunc

3 Jan 19, 2022
neurodsp is a collection of approaches for applying digital signal processing to neural time series

neurodsp is a collection of approaches for applying digital signal processing to neural time series, including algorithms that have been proposed for the analysis of neural time series. It also inclu

NeuroDSP 224 Dec 02, 2022
A Python step-by-step primer for Machine Learning and Optimization

early-ML Presentation General Machine Learning tutorials A Python step-by-step primer for Machine Learning and Optimization This github repository gat

Dimitri Bettebghor 8 Dec 01, 2022
The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it inside a loop of Design, Model Development and Operations.

MLOps The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it insid

Maykon Schots 25 Nov 27, 2022
Pragmatic AI Labs 421 Dec 31, 2022
Repositório para o #alurachallengedatascience1

1° Challenge de Dados - Alura A Alura Voz é uma empresa de telecomunicação que nos contratou para atuar como cientistas de dados na equipe de vendas.

Sthe Monica 16 Nov 10, 2022
SynapseML - an open source library to simplify the creation of scalable machine learning pipelines

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
Relevance Vector Machine implementation using the scikit-learn API.

scikit-rvm scikit-rvm is a Python module implementing the Relevance Vector Machine (RVM) machine learning technique using the scikit-learn API. Quicks

James Ritchie 204 Nov 18, 2022
XAI - An eXplainability toolbox for machine learning

XAI - An eXplainability toolbox for machine learning XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contai

The Institute for Ethical Machine Learning 875 Dec 27, 2022
PySurvival is an open source python package for Survival Analysis modeling

PySurvival What is Pysurvival ? PySurvival is an open source python package for Survival Analysis modeling - the modeling concept used to analyze or p

Square 265 Dec 27, 2022
CVXPY is a Python-embedded modeling language for convex optimization problems.

CVXPY The CVXPY documentation is at cvxpy.org. We are building a CVXPY community on Discord. Join the conversation! For issues and long-form discussio

4.3k Jan 08, 2023