Breast-Cancer-Classification - Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms

Overview

Breast Cancer Classification

  Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms. The metrics below have been used to determine these algorithms performance.

  • Accuracy
  • Precision
  • Recall
  • F Score

Accuracy may produce misleading results so because of that I also added some metrics which some of them are more reliable (e.g. F Score).

Algorithms

  Logistic regression, SVM (Support Vector Machines), decision trees, random forest, naive bayes, k-nearest neighbor algorithms have been used and for each of them metrics are calculated and results are shown.

Data Preprocessing

  The dataset contains no missing rows or columns so we can start feature selection. To do that I used correlation map to show the correlation between features. And I eliminated mostly correlated features like perimeter_mean and perimeter_worst. After this process we have 18 features.

image

Then we apply data normalization and our data is ready for classification.

# Data normalization
standardizer = StandardScaler()
X = standardizer.fit_transform(X)

Train and Test Split

I have split my dataset as %30 test, % 70 training and set random_state parameter to 0 as shown.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

After splitting dataset, I created dictionaries for algorithms and metrics. And in one for loop every model trained and tested.

models = {'Logistic Regression': LogisticRegression(), 'Support Vector Machines': LinearSVC(),
          'Decision Trees': DecisionTreeClassifier(), 'Random Forest': RandomForestClassifier(),
          'Naive Bayes': GaussianNB(), 'K-Nearest Neighbor': KNeighborsClassifier()}

accuracy, precision, recall, f_score = {}, {}, {}, {}

for key in models.keys():
    # Fit the classifier model
    models[key].fit(X_train, y_train)

    # Classification
    classification = models[key].predict(X_test)

    # Calculate Accuracy, Precision, Recall and F Score Metrics
    accuracy[key] = accuracy_score(classification, y_test)
    precision[key] = precision_score(classification, y_test)
    recall[key] = recall_score(classification, y_test)
    f_score[key] = f1_score(classification, y_test)

Results

As you can see the figure below, most successful classification algorithm seems to logistic regression. And decision tress has the worst performance.

image

To see the values algorithms got for each metric see the table below.

Algorithm Accuracy Precision Recall F Score
Logistic Regression 0.97 0.95 0.96 0.96
SVM 0.95 0.95 0.93 0.94
Decision Trees 0.86 0.84 0.80 0.82
Random Forest 0.94 0.93 0.90 0.92
Naive Bayes 0.90 0.87 0.85 0.86
K-Nearest Neighbor 0.91 0.85 0.91 0.88

Conclusion

I have tuned few parameters for example training and test size, random state and most of the algorithms performed close enough to each other. For different datasets this code can be used. You may need to change feature selection part and if your dataset has missing values you should fill in these values as well. Other than these things you can perform classification with different kind of algorithms.

Owner
Mert Sezer Ardal
Mert Sezer Ardal
Learning --> Numpy January 2022 - winter'22

Numerical-Python Numpy NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along

Shahzaneer Ahmed 0 Mar 12, 2022
Machine Learning for RC Cars

Suiron Machine Learning for RC Cars Prediction visualization (green = actual, blue = prediction) Click the video below to see it in action! Dependenci

Kendrick Tan 706 Jan 02, 2023
Data Efficient Decision Making

Data Efficient Decision Making

Microsoft 197 Jan 06, 2023
TorchDrug is a PyTorch-based machine learning toolbox designed for drug discovery

A powerful and flexible machine learning platform for drug discovery

MilaGraph 1.1k Jan 08, 2023
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 648 Dec 16, 2022
Responsible Machine Learning with Python

Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.

ph_ 624 Jan 06, 2023
To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction

To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction. The challenge aims to adress the problems of medical imbalanced data classification.

Marwan Mashra 1 Jan 31, 2022
Machine Learning approach for quantifying detector distortion fields

DistortionML Machine Learning approach for quantifying detector distortion fields. This project is a feasibility study for training a surrogate model

Joel Bernier 1 Nov 05, 2021
Summer: compartmental disease modelling in Python

Summer: compartmental disease modelling in Python Summer is a Python-based framework for the creation and execution of compartmental (or "state-based"

6 May 13, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 663 Dec 31, 2022
Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking and Jupyter notebook analysis.

sklearn-evaluation Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking, and Jupyter notebook analysis. Suppo

Eduardo Blancas 354 Dec 31, 2022
Distributed scikit-learn meta-estimators in PySpark

sk-dist: Distributed scikit-learn meta-estimators in PySpark What is it? sk-dist is a Python package for machine learning built on top of scikit-learn

Ibotta 282 Dec 09, 2022
Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters

Somoclu Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs, it is able to rely on MPI for distributing

Peter Wittek 239 Nov 10, 2022
Ml based project which uses regression technique to predict the price.

Price-Predictor Ml based project which uses regression technique to predict the price. I have used various regression models and finds the model with

Garvit Verma 1 Jul 09, 2022
A Streamlit demo to interactively visualize Uber pickups in New York City

Streamlit Demo: Uber Pickups in New York City A Streamlit demo written in pure Python to interactively visualize Uber pickups in New York City. View t

Streamlit 230 Dec 28, 2022
Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models

Highly interpretable, sklearn-compatible classifier based on decision rules This is a scikit-learn compatible wrapper for the Bayesian Rule List class

Tamas Madl 482 Nov 19, 2022
Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models.

Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models. Feature-engine's transformers follow scikit-learn's functionality wit

Soledad Galli 33 Dec 27, 2022
STUMPY is a powerful and scalable Python library for computing a Matrix Profile, which can be used for a variety of time series data mining tasks

STUMPY STUMPY is a powerful and scalable library that efficiently computes something called the matrix profile, which can be used for a variety of tim

TD Ameritrade 2.5k Jan 06, 2023
Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any student(s) having the second lowest grade.

Hackerank-Nested-List Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any s

Sangeeth Mathew John 2 Dec 14, 2021
Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas.

Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas. Its objective is to ex

Taylor G Smith 54 Aug 20, 2022