The unified machine learning framework, enabling framework-agnostic functions, layers and libraries.

Overview

https://github.com/unifyai/ivy/blob/master/docs/partial_source/logos/logo.png?raw=true



The unified machine learning framework, enabling framework-agnostic functions, layers and libraries.

Contents

Overview

What is Ivy?

Ivy is a unified machine learning framework which maximizes the portability of machine learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries and layers can then be written using Ivy, with simultaneous support for all frameworks. Ivy currently supports Jax, TensorFlow, PyTorch, MXNet and Numpy. Check out the docs for more info!

Ivy Libraries

There are a host of derived libraries written in Ivy, in the areas of mechanics, 3D vision, robotics, gym environments, neural memory, pre-trained models + implementations, and builder tools with trainers, data loaders and more. Click on the icons below to learn more!


Quick Start

Ivy can be installed like so: pip install ivy-core You can immediately use Ivy to train a neural network, using your favourite framework in the background, like so:

import ivy

class MyModel(ivy.Module):
    def __init__(self):
        self.linear0 = ivy.Linear(3, 64)
        self.linear1 = ivy.Linear(64, 1)
        ivy.Module.__init__(self)

    def _forward(self, x):
        x = ivy.relu(self.linear0(x))
        return ivy.sigmoid(self.linear1(x))

ivy.set_framework('torch')  # change to any framework!
model = MyModel()
optimizer = ivy.Adam(1e-4)
x_in = ivy.array([1., 2., 3.])
target = ivy.array([0.])

def loss_fn(v):
    out = model(x_in, v=v)
    return ivy.reduce_mean((out - target)**2)[0]

for step in range(100):
    loss, grads = ivy.execute_with_gradients(loss_fn, model.v)
    model.v = optimizer.step(model.v, grads)
    print('step {} loss {}'.format(step, ivy.to_numpy(loss).item()))

print('Finished training!')

This example uses PyTorch as a backend framework, but the backend can easily be changed to your favourite framework, such as TensorFlow, JAX or MXNet.

Framework Agnostic Functions

In the example below we show how Ivy's concatenation function is compatible with tensors from different frameworks. This is the same for ALL Ivy functions. They can accept tensors from any framework and return the correct result.

import jax.numpy as jnp
import tensorflow as tf
import numpy as np
import mxnet as mx
import torch

import ivy

jax_concatted = ivy.concatenate((jnp.ones((1,)), jnp.ones((1,))), -1)
tf_concatted = ivy.concatenate((tf.ones((1,)), tf.ones((1,))), -1)
np_concatted = ivy.concatenate((np.ones((1,)), np.ones((1,))), -1)
mx_concatted = ivy.concatenate((mx.nd.ones((1,)), mx.nd.ones((1,))), -1)
torch_concatted = ivy.concatenate((torch.ones((1,)), torch.ones((1,))), -1)

To see a list of all Ivy methods, type ivy. into a python command prompt and press tab. You should then see output like the following:

https://github.com/unifyai/ivy/blob/master/docs/partial_source/images/ivy_tab.png?raw=true

Based on this short code sample alone, you may wonder, why is this helpful? Don't most developers stick to just one framework for a project? This is indeed the case, and the benefit of Ivy is not the ability to combine different frameworks in a single project.

So what is the benefit of Ivy?

In a Nutshell

Ivy's strength arises when we want to maximize the usability of our code.

We can write a set of functions once in Ivy, and share these with the community so that all developers can use them, irrespective of their personal choice of framework. TensorFlow? PyTorch? Jax? With Ivy code it doesn't matter!

This makes it very simple to create highly portable machine learning codebases. The core idea behind Ivy is captured by the example of the ivy.clip function below.

https://github.com/unifyai/ivy/blob/master/docs/partial_source/images/a_unified_framework.png?raw=true

On it's own this may not seem very exciting, there are more interesting things to do in machine learning than clip tensors. Ivy is a building block for more interesting applications.

For example, the Ivy libraries for mechanics, 3D vision, robotics, and differentiable environments are all written in pure Ivy. These libraries provide fully differentiable implementations of various applied functions, primed for integration in end-to-end networks, for users of any machine-learning framework.

Another benefit of Ivy is user flexibility. By keeping the Ivy abstraction lightweight and fully functional, this keeps you in full control of your code. The schematic below emphasizes that you can choose to develop at any abstraction level.

https://github.com/unifyai/ivy/blob/master/docs/partial_source/images/abstraction_hierarchy.png?raw=true

You can code entirely in Ivy, or mainly in their native DL framework, with a small amount of Ivy code. This is entirely up to you, depending on how many Ivy functions you need from existing Ivy libraries, and how much new Ivy code you add into your own project, to maximize it's audience when sharing online.

Where Next?

So, now that you've got the gist of Ivy, and why it's useful. Where to next?

This depends on whether you see yourself in the short term as more likely to be an Ivy library user or an Ivy library contributor.

If you would like to use the existing set of Ivy libraries, dragging and dropping key functions into your own project, then we suggest you dive into some of the demos for the various Ivy libraries currently on offer. Simply open up the main docs, then open the library-specific docs linked on the bottom left, and check out the demos folder in the library repo.

On the other hand, if you have your own new library in mind, or if you would like to implement parts of your own project in Ivy to maximise its portability, then we recommend checking out the page Using Ivy in the docs. Here, we dive a bit deeper into the Ivy framework, and the best coding practices to get the most out of Ivy for your own codebases and libraries.

Citation

@article{lenton2021ivy,
  title={Ivy: Templated deep learning for inter-framework portability},
  author={Lenton, Daniel and Pardo, Fabio and Falck, Fabian and James, Stephen and Clark, Ronald},
  journal={arXiv preprint arXiv:2102.02886},
  year={2021}
}
Comments
  • Create numpy diagonal

    Create numpy diagonal

    diagonal #6616. Kindly mark a green circle on it. So there will be no conflict in the future. I already experienced that thing. https://github.com/unifyai/ivy/issues/6616.

    TensorFlow Frontend NumPy Frontend Array API Ivy Functional API 
    opened by hrak99 59
  • Add Statistical functions mean numpy frontend #2546

    Add Statistical functions mean numpy frontend #2546

    Greetings i think i did everything i did the frontend the tests as well and changed the init files i did the mean function according to the numpy documentation waiting for your reply. Best regards.

    opened by Emperor-WS 26
  • Isin extension

    Isin extension

    #5716

    added most backend implementations there is only problem with tensorflow I'm still trying to solve since it doesnt have the function isin, once I'm able to do that I will add tests

    Array API Function Reformatting Ivy Functional API Ivy API Experimental 
    opened by pillarxyz 20
  • reformat shape_to_tuple

    reformat shape_to_tuple

    Hi, I've got a question on testings. I was getting errors, so I checked the logs and I found out that some of those tests aren't ready yet (e.g.: shape_to_tuple). Not sure if I'm right, but it'll be awesome if you give some information about this. Thank you.

    opened by mcandemir 19
  • feat: add is_tensor to tensorflow frontend general functions

    feat: add is_tensor to tensorflow frontend general functions

    Close #7584 Need help with PyTest, I am unable to wrap my head around the testing helpers yet.

    Essentially, when I run these tests, I get the same error, despite trying various combinations of the parameters passed to the test_frontend_function

    TensorFlow Frontend 
    opened by chtnnh 18
  • argmax function: general.py

    argmax function: general.py

    Test Cases:

    • 42 passed for pytest ./ivy/ivy_tests/test_functional/test_core/test_general.py::test_argmax --disable-warnings -rs
    • 6 skipped for conftest.py
    • No errors

    Implemented for

    • [x] jax
    • [x] numpy
    • [x] mxnet
    • [x] tensorflow
    • [x] torch
    Array API Single Function 
    opened by 7wikd 18
  • reformatting task coding challenge

    reformatting task coding challenge

    Please consider this my PR for the task 'vairable_data' in the 'gradients' submodule. The task number #9283 and the ToDo list is #776

    https://github.com/unifyai/ivy/issues/9283

    Array API Ivy Functional API 
    opened by waheeduddin 0
Releases(v1.1.9)
  • v1.1.5(Jul 26, 2021)

    Version 1.1.5.

    Added some new methods and classes, improved the ivy.Module and ivy.Container classes. ivy.Container now overrides more built-in methods, and has more flexible nested methods such as gather_nd, repeat, stop_gradients etc.

    This version was tested against: JAX 0.2.17 JAXLib 0.1.69 TensorFlow 2.5.0 TensorFlow Addons 0.13.0 TensorFlow Probability 0.13.0 PyTorch 1.9.0 MXNet 1.8.0 NumPy 1.19.5

    However, Ivy 1.1.5 inevitably supports many previous and future backend versions, due to the stability of the core APIs for each backend framework.

    Source code(tar.gz)
    Source code(zip)
  • v1.1.4(Apr 12, 2021)

    Version 1.1.4.

    Added some new methods, fixed some small bugs, improved unit testing, and tested against the latest backend versions.

    This version was tested against: JAX 0.2.12 TensorFlow 2.4.1 PyTorch 1.8.1 MXNet 1.8.0 NumPy 1.20.2

    However, Ivy 1.1.4 inevitably supports many previous and future backend versions, due to the stability of the core APIs for each backend framework.

    Source code(tar.gz)
    Source code(zip)
  • v1.1.3(Mar 19, 2021)

    Version 1.1.3.

    Added some new methods, fixed some small bugs, improved unit testing, and tested against the latest backend versions.

    This version was tested against: JAX 0.2.10 TensorFlow 2.4.1 PyTorch 1.8.0 MXNet 1.7.0 NumPy 1.19.5

    However, Ivy 1.1.3 likely supports many previous and future backend versions, due to the stability of the core APIs for each backend framework.

    Source code(tar.gz)
    Source code(zip)
  • v1.1.2(Feb 27, 2021)

    Version 1.1.2.

    Added adam update, changed gradient methdos to operate on gradient dicts instead of lists, added new container chain chain method, among other small changes.

    This version was tested against: JAX 0.2.9 TensorFlow 2.4.1 PyTorch 1.7.1 MXNet 1.7.0 NumPy 1.19.5

    However, Ivy 1.1.2 likely supports many previous and future backend versions, due to the stability of the core APIs for each backend framework.

    Source code(tar.gz)
    Source code(zip)
  • v1.1.1(Feb 10, 2021)

A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.

Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog

Ibrahim Koné 2 May 24, 2022
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
Python ML pipeline that showcases mltrace functionality.

mltrace tutorial Date: October 2021 This tutorial builds a training and testing pipeline for a toy ML prediction problem: to predict whether a passeng

Log Labs 28 Nov 09, 2022
Iterative stochastic gradient descent (SGD) linear regressor with regularization

SGD-Linear-Regressor Iterative stochastic gradient descent (SGD) linear regressor with regularization Dataset: Kaggle “Graduate Admission 2” https://w

Zechen Ma 1 Oct 29, 2021
Xeasy-ml is a packaged machine learning framework.

xeasy-ml 1. What is xeasy-ml Xeasy-ml is a packaged machine learning framework. It allows a beginner to quickly build a machine learning model and use

9 Mar 14, 2022
CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

ZhihuiYangCS 8 Jun 07, 2022
XAI - An eXplainability toolbox for machine learning

XAI - An eXplainability toolbox for machine learning XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contai

The Institute for Ethical Machine Learning 875 Dec 27, 2022
Machine Learning Techniques using python.

👋 Hi, I’m Fahad from TEXAS TECH. 👀 I’m interested in Optimization / Machine Learning/ Statistics 🌱 I’m currently learning Machine Learning and Stat

FAHAD MOSTAFA 1 Jan 19, 2022
Retrieve annotated intron sequences and classify them as minor (U12-type) or major (U2-type)

(intron I nterrogator and C lassifier) intronIC is a program that can be used to classify intron sequences as minor (U12-type) or major (U2-type), usi

Graham Larue 4 Jul 26, 2022
A model to predict steering torque fully end-to-end

torque_model The torque model is a spiritual successor to op-smart-torque, which was a project to train a neural network to control a car's steering f

Shane Smiskol 4 Jun 03, 2022
This repo includes some graph-based CTR prediction models and other representative baselines.

Graph-based CTR prediction This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods: F

Big Data and Multi-modal Computing Group, CRIPAC 47 Dec 30, 2022
Napari sklearn decomposition

napari-sklearn-decomposition A simple plugin to use with napari This napari plug

1 Sep 01, 2022
PySpark + Scikit-learn = Sparkit-learn

Sparkit-learn PySpark + Scikit-learn = Sparkit-learn GitHub: https://github.com/lensacom/sparkit-learn About Sparkit-learn aims to provide scikit-lear

Lensa 1.1k Jan 04, 2023
Class-imbalanced / Long-tailed ensemble learning in Python. Modular, flexible, and extensible

IMBENS: Class-imbalanced Ensemble Learning in Python Language: English | Chinese/中文 Links: Documentation | Gallery | PyPI | Changelog | Source | Downl

Zhining Liu 176 Jan 04, 2023
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022
This handbook accompanies the course: Machine Learning with Hung-Yi Lee

This handbook accompanies the course: Machine Learning with Hung-Yi Lee

RenChu Wang 472 Dec 31, 2022
A basic Ray Tracer that exploits numpy arrays and functions to work fast.

Python-Fast-Raytracer A basic Ray Tracer that exploits numpy arrays and functions to work fast. The code is written keeping as much readability as pos

Rafael de la Fuente 393 Dec 27, 2022
Code Repository for Machine Learning with PyTorch and Scikit-Learn

Code Repository for Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka 1.4k Jan 03, 2023
UpliftML: A Python Package for Scalable Uplift Modeling

UpliftML is a Python package for scalable unconstrained and constrained uplift modeling from experimental data. To accommodate working with big data, the package uses PySpark and H2O models as base l

Booking.com 254 Dec 31, 2022
AtsPy: Automated Time Series Models in Python (by @firmai)

Automated Time Series Models in Python (AtsPy) SSRN Report Easily develop state of the art time series models to forecast univariate data series. Simp

Derek Snow 465 Jan 02, 2023