The Fuzzy Labs guide to the universe of open source MLOps

Overview

Open Source MLOps

This is the Fuzzy Labs guide to the universe of free and open source MLOps tools.

Contents

What is MLOps anyway?

MLOps (machine learning operations) is a discipline that helps people to train, deploy and run machine learning models successfully in production environments. Because this is a new and rapidly-evolving field, there are a lot of tools out there, and new ones appear all the time. If we've missed any, then please do raise a pull request!

Data version control

Just like code, data grows and evolves over time. Data versioning tools help you to keep track of these changes.

You might wonder why you can't just store data in Git (or equivalent). There are a few reasons this doesn't work, but the main one is size: Git is designed for small text files, and typical datasets used in machine learning are just too big. Some tools, like DVC, store the data externally, but also integrate with Git so that data versions can be linked to code versions.

  • DVC - one of the most popular general-purpose data versioning tools.
  • Delta Lake - data versioning for data warehouses.
  • LakeFS - Transform your object storage into a Git-like repository.
  • Git LFS - while this doesn't specialise in machine learning use-cases, it's another popular way to version datasets.

Experiment tracking

Machine learning involves a lot of experimentation. We end up training a lot of models, most of which are never intended to go into production, but represent progressive steps towards having something production-worthy. Experiment tracking tools are there to help us keep track of each experiment. What exactly do we need to track? typically this includes the code version, data version, input parameters, training performance metrics, as well as the final model assets.

Model training

Feature stores

Model deployment and serving

Model serving is the process of taking a trained model and presenting it behind a REST API, and this enables other software components to interact with a model. To make deployment of these model servers as simple as possible, it's commonplace to run them inside Docker containers and deploy them to a container orchestration system such as Kubernetes.

Model monitoring

Full stacks

More resources

Here are some more resources for MLOps, both open-source and proprietary.

Comments
  • Data Catalogues

    Data Catalogues

    Just a short snippet on Data Catalogues. Almost started trying to build out a custom one because I didn't know they existed. Therefore feel it's important to make some noise about them.

    Open to feedback, can add more detail once I know if you guys think they fit the MLOps category. Only didn't put them under the Data Governance bin because those that focus on Data Discovery don't have so much to do with it. Happy to shuffle the content over though.

    opened by GeorgePearse 3
  • Add feathr (feature store by Linkedin)

    Add feathr (feature store by Linkedin)

    This PR adds Feathr

    About Feathr:

    Feathr is an open source enterprise-grade, high performance feature store, hosted in incubation in the LF AI & Data Foundation.

    @archena Please let me know if any changes are needed for the description.

    opened by SangamSwadiK 1
  • add new section for Model validation, with trubrics

    add new section for Model validation, with trubrics

    Hello, we have recently launched Trubrics and I'd love to add it to your great list!

    Trubrics helps Data Scientists validate their models, by providing them with a framework to write validations. Validations can be built purely with data science knowledge, or with feedback collected from business users on ML models.

    Thanks :grinning:

    opened by jeffkayne 1
  • Added MLEM and put description for CML

    Added MLEM and put description for CML

    Hello! We have a new MLOPs tool we'd love to add to the awesome-open-mlops!

    You can find the repo here: https://github.com/iterative/mlem Read the blog post: https://iterative.ai/blog/MLEM-release Watch the video: https://youtu.be/7h0fiZNwCnA

    Let me know if you need anything else or would like to collaborate in some way! Best regards...

    opened by mertbozkir 1
  • Added few notes on YDNBB, plus two more MIT-licensed repos

    Added few notes on YDNBB, plus two more MIT-licensed repos

    Added few hopefully interesting repos, all OS focused. I used monitoring for RecList even if (interestingly) is probably in his own category (with CheckList for example): "model testing", or something like that!

    opened by jacopotagliabue 1
  • Update the open source MLOps repo with data annotation

    Update the open source MLOps repo with data annotation

    Picked out the most interesting tools from this repo built by ZenML. Added a new section to our repo for data annotation. Include a link to ZenML’s repo as well.

    opened by osw282 1
  • chore: Add envd

    chore: Add envd

    I'd like to share envd with the community!

    envd is a machine learning development environment for data science and AI/ML engineering teams.

    🐍 No Docker, only Python - Focus on writing Python code, we will take care of Docker and development environment setup.

    🖨️ Built-in Jupyter/VSCode - First-class support for Jupyter and VSCode remote extension.

    ⏱️ Save time - Better cache management to save your time, keep the focus on the model, instead of dependencies.

    ☁️ Local & cloud - envd integrates seamlessly with Docker so that you can easily share, version, and publish envd environments with Docker Hub or any other OCI image registries.

    🔁 Repeatable builds & reproducible results - You can reproduce the same dev environment on your laptop, public cloud VMs, or Docker containers, without any change in setup.

    Signed-off-by: Ce Gao [email protected]

    opened by gaocegege 1
  • Adds a section for model registries

    Adds a section for model registries

    👋 Hello!

    This PR adds a new section for model registries and I've added both ML Flow and modelstore to it. Disclosure: I'm the author of the latter.

    When reading through the other sections, I saw that this might overlap slightly with experiment tracking, which is described as:

    What exactly do we need to track? typically this includes the code version, data version, input parameters, training performance metrics, as well as the final model assets.

    Happy to change this around as you see fit.

    Thank you for considering this contribution 🙏

    opened by nlathia 1
  • Adds Hamilton and feature engineering section

    Adds Hamilton and feature engineering section

    Hamilton was created to help wrangle a feature engineering code base. It forces decoupling of feature transform logic from materialization, and results in code that is always unit testable, reusable, and documentation friendly.

    I didn't see an appropriate section to add it, so I created a feature engineering section - putting it in feature stores wouldn't be the right place.

    opened by skrawcz 1
  • Image Analysis Tools

    Image Analysis Tools

    I've synced the forks. I have no idea why my previous data catalogue addition is listed again as a new change? Will correct that if anyone can tell me where I've gone wrong.

    I've hit my limit of GitHub lists so will be making greater use of this repo. Adding in image analysis tools (fiftyone - the dominant player, and dendromap - looks very powerful).

    Will add links, and try to get round to adding descriptions for data catalogues soon

    opened by GeorgePearse 1
  • Deepchecks library

    Deepchecks library

    Deepchecks is open source tool for testing and validating machine learning models and data. The 3 checks supported in different phases of ML pipeline are

    • Data Integrity (between ingestion and preprocessing step)
    • Train-Test Validation (Distribution and Methodology Checks) (between preprocessing and training step)
    • Model Performance Evaluation (evaluation step)
    opened by dudeperf3ct 0
Releases(v0.1.0-alpha)
  • v0.1.0-alpha(Dec 13, 2021)

    Initial release of the Awesome Open Source MLOps list.

    • Data version control
    • Experiment tracking
    • Model training
    • Feature stores
    • Model deployment and serving
    • Model monitoring
    • Full stacks
    Source code(tar.gz)
    Source code(zip)
Owner
Fuzzy Labs
MLOps done right
Fuzzy Labs
This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
Data from "Datamodels: Predicting Predictions with Training Data"

Data from "Datamodels: Predicting Predictions with Training Data" Here we provid

Madry Lab 51 Dec 09, 2022
As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Crate will be the hub of various ML projects which will be the resources for the ML enthusiasts! Open Source Program: SWOC 2021 and JWOC 2022.

Machine Learning Loot Crate 💻 🧰 🔴 Welcome contributors! As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Cra

Abhishek Sharma 89 Dec 28, 2022
Predict profitability of trades based on indicator buy / sell signals

Predict profitability of trades based on indicator buy / sell signals Trade profitability analysis for trades based on various indicators signals: MAC

Tomasz Porzycki 1 Dec 15, 2021
A Multipurpose Library for Synthetic Time Series Generation in Python

TimeSynth Multipurpose Library for Synthetic Time Series Please cite as: J. R. Maat, A. Malali, and P. Protopapas, “TimeSynth: A Multipurpose Library

278 Dec 26, 2022
Markov bot - A Writing bot based on Markov Chain for Data Structure Lab

基于马尔可夫链的写作机器人 前端 用html/css完成 Demo展示(已给出文本的相应展示) 用户提供相关的语料库后训练的成果 后端 要完成的几个接口 解析文

DysprosiumDy 9 May 05, 2022
Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

1 Jan 01, 2022
A Python implementation of FastDTW

fastdtw Python implementation of FastDTW [1], which is an approximate Dynamic Time Warping (DTW) algorithm that provides optimal or near-optimal align

tanitter 651 Jan 04, 2023
Machine learning template for projects based on sklearn library.

Machine learning template for projects based on sklearn library.

Janez Lapajne 17 Oct 28, 2022
K-means clustering is a method used for clustering analysis, especially in data mining and statistics.

K Means Algorithm What is K Means This algorithm is an iterative algorithm that partitions the dataset according to their features into K number of pr

1 Nov 01, 2021
Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogramas anuais com spark, em pyspark e SQL!

Olá! Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogr

Henrique de Paula 10 Apr 04, 2022
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.

TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models

538 Jan 01, 2023
To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

Astitva Veer Garg 1 Jan 11, 2022
MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training

MosaicML Composer MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training. We aim to ease th

MosaicML 2.8k Jan 06, 2023
Python 3.6+ toolbox for submitting jobs to Slurm

Submit it! What is submitit? Submitit is a lightweight tool for submitting Python functions for computation within a Slurm cluster. It basically wraps

Facebook Incubator 768 Jan 03, 2023
A Python Module That Uses ANN To Predict A Stocks Price And Also Provides Accurate Technical Analysis With Many High Potential Implementations!

Stox A Module to predict the "close price" for the next day and give "technical analysis". It uses a Neural Network and the LSTM algorithm to predict

Stox 31 Dec 16, 2022
Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft 366 Jan 03, 2023
ml4ir: Machine Learning for Information Retrieval

ml4ir: Machine Learning for Information Retrieval | changelog Quickstart → ml4ir Read the Docs | ml4ir pypi | python ReadMe ml4ir is an open source li

Salesforce 77 Jan 06, 2023
The Ultimate FREE Machine Learning Study Plan

The Ultimate FREE Machine Learning Study Plan

Patrick Loeber (Python Engineer) 2.5k Jan 05, 2023
Cool Python features for machine learning that I used to be too afraid to use. Will be updated as I have more time / learn more.

python-is-cool A gentle guide to the Python features that I didn't know existed or was too afraid to use. This will be updated as I learn more and bec

Chip Huyen 3.3k Jan 05, 2023