Accelerating model creation and evaluation.

Overview

Emerald

EmeraldML

A machine learning library for streamlining the process of
(1) cleaning and splitting data,
(2) training, optimizing, and testing various models based on the task, and
(3) scoring and ranking them
during the exploratory phase for an elementary analysis of which models perform better for a specific dataset.

Installation

Dependencies

  • Python (>= 3.7)
  • NumPy (>= 1.21.2)
  • pandas (>= 1.3.3)
  • scikit-learn (>= 0.24.2)
  • statsmodels (>= 0.12.2)

User installation

pip install emeraldml

Development

Source code

You can check the latest sources with the command:

git clone https://github.com/yu3ufff/emeraldml.git

Demo

Getting the data:

import pandas as pd
audi = pd.read_csv('audi.csv')
audi.head()
|    | model   |   year |   price | transmission   |   mileage | fuelType   |   tax |   mpg |   engineSize |
|---:|:--------|-------:|--------:|:---------------|----------:|:-----------|------:|------:|-------------:|
|  0 | A1      |   2017 |   12500 | Manual         |     15735 | Petrol     |   150 |  55.4 |          1.4 |
|  1 | A6      |   2016 |   16500 | Automatic      |     36203 | Diesel     |    20 |  64.2 |          2   |
|  2 | A1      |   2016 |   11000 | Manual         |     29946 | Petrol     |    30 |  55.4 |          1.4 |
|  3 | A4      |   2017 |   16800 | Automatic      |     25952 | Diesel     |   145 |  67.3 |          2   |
|  4 | A3      |   2019 |   17300 | Manual         |      1998 | Petrol     |   145 |  49.6 |          1   |

Using EmeraldML:

import emerald
from emerald.boa import RegressionBoa

rboa = RegressionBoa(random_state=3)
rboa.hunt(data=audi, target='price')
rboa.ladder
[(OptimalRFRegressor, 0.9624889664024406),
 (OptimalDTRegressor, 0.9514992411732952),
 (OptimalKNRegressor, 0.9511411883559433),
 (OptimalLinearRegression, 0.8876961846248467),
 (OptimalABRegressor, 0.8491539140007975)]
for i in range(len(rboa)):
    print(rboa.model(i))
RandomForestRegressor(min_samples_split=5, n_estimators=500, random_state=3)
DecisionTreeRegressor(max_depth=15, min_samples_split=10, random_state=3)
KNeighborsRegressor(n_neighbors=3, p=1)
LinearRegression()
AdaBoostRegressor(learning_rate=0.1, n_estimators=100, random_state=3)
Owner
Yusuf
Yusuf
Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.

Trading Tesla with Machine Learning and Sentiment Analysis An interactive program to train a Random Forest Classifier to predict Tesla daily prices us

Renato Votto 31 Nov 17, 2022
Dual Adaptive Sampling for Machine Learning Interatomic potential.

DAS Dual Adaptive Sampling for Machine Learning Interatomic potential. How to cite If you use this code in your research, please cite this using: Hong

6 Jul 06, 2022
机器学习检测webshell

ai-webshell-detect 机器学习检测webshell,利用textcnn+简单二分类网络,基于keras,花了七天 检测原理: 从文件熵 文件长度 文件语句提取出特征,然后文件熵与长度送入二分类网络,文件语句送入textcnn 项目原理,介绍,怎么做出来的

Huoji's 56 Dec 14, 2022
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions

ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions, in particular, the posterior distributions of Bayesian models in

Computational Data Science Lab 182 Dec 31, 2022
Upgini : data search library for your machine learning pipelines

Automated data search library for your machine learning pipelines → find & deliver relevant external data & features to boost ML accuracy :chart_with_upwards_trend:

Upgini 175 Jan 08, 2023
Machine-learning-dell - Repositório com as atividades desenvolvidas no curso de Machine Learning

📚 Descrição Neste curso da Dell aprofundamos nossos conhecimentos em Machine Learning. 🖥️ Aulas (Em curso) 1.1 - Python aplicado a Data Science 1.2

Claudia dos Anjos 1 Jan 05, 2022
A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al.

pyUpSet A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al. Contents Purpose How to install How it work

288 Jan 04, 2023
Code base of KU AIRS: SPARK Autonomous Vehicle Team

KU AIRS: SPARK Autonomous Vehicle Project Check this link for the blog post describing this project and the video of SPARK in simulation and on parkou

Mehmet Enes Erciyes 1 Nov 23, 2021
GAM timeseries modeling with auto-changepoint detection. Inspired by Facebook Prophet and implemented in PyMC3

pm-prophet Pymc3-based universal time series prediction and decomposition library (inspired by Facebook Prophet). However, while Faceook prophet is a

Luca Giacomel 314 Dec 25, 2022
Generate music from midi files using BPE and markov model

Generate music from midi files using BPE and markov model

Aditya Khadilkar 37 Oct 24, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 08, 2023
Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application

Intel(R) Extension for Scikit-learn* Installation | Documentation | Examples | Support | FAQ With Intel(R) Extension for Scikit-learn you can accelera

Intel Corporation 858 Dec 25, 2022
This machine learning model was developed for House Prices

This machine learning model was developed for House Prices - Advanced Regression Techniques competition in Kaggle by using several machine learning models such as Random Forest, XGBoost and LightGBM.

serhat_derya 1 Mar 02, 2022
scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly.

scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly. Its main purpose is the transformation of bilinear forms into sparse matrices and linear forms into vectors.

Tom Gustafsson 297 Dec 13, 2022
Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters

Somoclu Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs, it is able to rely on MPI for distributing

Peter Wittek 239 Nov 10, 2022
Decision tree is the most powerful and popular tool for classification and prediction

Diabetes Prediction Using Decision Tree Introduction Decision tree is the most powerful and popular tool for classification and prediction. A Decision

Arjun U 1 Jan 23, 2022
Bonsai: Gradient Boosted Trees + Bayesian Optimization

Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.

24 Oct 27, 2022
CVXPY is a Python-embedded modeling language for convex optimization problems.

CVXPY The CVXPY documentation is at cvxpy.org. We are building a CVXPY community on Discord. Join the conversation! For issues and long-form discussio

4.3k Jan 08, 2023
Evidently helps analyze machine learning models during validation or production monitoring

Evidently helps analyze machine learning models during validation or production monitoring. The tool generates interactive visual reports and JSON profiles from pandas DataFrame or csv files. Current

Evidently AI 3.1k Jan 07, 2023
A Pythonic framework for threat modeling

pytm: A Pythonic framework for threat modeling Introduction Traditional threat modeling too often comes late to the party, or sometimes not at all. In

Izar Tarandach 644 Dec 20, 2022