A Powerful Serverless Analysis Toolkit That Takes Trial And Error Out of Machine Learning Projects

Overview


KXY: A Seemless API to 10x The Productivity of Machine Learning Engineers

License PyPI Latest Release Downloads

Documentation

https://www.kxy.ai/reference/

Installation

From PyPi:

pip install kxy

From GitHub:

git clone https://github.com/kxytechnologies/kxy-python.git & cd ./kxy-python & pip install .

Authentication

All heavy-duty computations are run on our serverless infrastructure and require an API key. To configure the package with your API key, run

kxy configure

and follow the instructions. To get an API key you need an account; you can sign up for a free trial here. You'll then be automatically given an API key which you can find here.

KXY is free for academic use.

Docker

The Docker image kxytechnologies/kxy has been built for your convenience, and comes with anaconda, auto-sklearn, and the kxy package.

To start a Jupyter Notebook server from a sandboxed Docker environment, run

&& /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''" ">
docker run -i -t -p 5555:8888 kxytechnologies/kxy:latest /bin/bash -c "kxy configure 
   
     && /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''
    "
   

where you should replace with your API key and navigate to http://localhost:5555 in your browser. This docker environment comes with all examples available on the documentation website.

To start a Jupyter Notebook server from an existing directory of notebooks, run

&& /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''" ">
docker run -i -t --mount src=</path/to/your/local/dir>,target=/opt/notebooks,type=bind -p 5555:8888 kxytechnologies/kxy:latest /bin/bash -c "kxy configure 
   
     && /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''
    "
   

where you should replace with the path to your local notebook folder and navigate to http://localhost:5555 in your browser.

Other Programming Language

We plan to release friendly API client in more programming language.

In the meantime, you can directly issue requests to our RESTFul API using your favorite programming language.

You might also like...
Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

SDK: Overview of the Kubeflow pipelines service Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics, detecting change points and anomalies, to forecasting future trends.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A library of extension and helper modules for Python's data analysis and machine learning libraries.
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Comments
  • error in import kxy

    error in import kxy

    Hi, After installing the kxy package and configuring the API key, the import kxy shows the error below:

    .../python3.9/site-packages/kxy/pfs/pfs_selector.py in <module>
          6 import numpy as np
          7 
    ----> 8 import tensorflow as tf
          9 from tensorflow.keras.callbacks import EarlyStopping, TerminateOnNaN
         10 from tensorflow.keras.optimizers import Adam
    
    ModuleNotFoundError: No module named 'tensorflow'
    
    

    what version of tensorflow is needed for kxy to work?

    opened by zeydabadi 2
  • generate_features Documentation?

    generate_features Documentation?

    Is there any documentation on how to use the generate_features function? It doesn't appear in the documentation and I can't find it in the github. e.g. how to use the entity column, how to format time-series data in advance for it, etc'. Thanks!

    opened by ddofer 1
  • error kxy.data_valuation

    error kxy.data_valuation

    Hi, After running chievable_performance_df = X_train_reduced.kxy.data_valuation(target_column='state', problem_type='classification', include_mutual_information=True, anonymize=True) I get the following error and the function does not return anything: `During handling of the above exception, another exception occurred:

    Traceback (most recent call last): File "/usr/lib/python3.9/asyncio/tasks.py", line 258, in __step result = coro.throw(exc) File "/home/lucy/Downloads/general/lib/python3.9/site-packages/tornado/websocket.py", line 1104, in wrapper raise WebSocketClosedError() tornado.websocket.WebSocketClosedError Task exception was never retrieved future: <Task finished name='Task-46004' coro=<WebSocketProtocol13.write_message..wrapper() done, defined at /home/lucy/Downloads/general/lib/python3.9/site-packages/tornado/websocket.py:1100> exception=WebSocketClosedError()> Traceback (most recent call last): File "/home/lucy/Downloads/general/lib/python3.9/site-packages/tornado/websocket.py", line 1102, in wrapper await fut File "/usr/lib/python3.9/asyncio/tasks.py", line 328, in __wakeup future.result() tornado.iostream.StreamClosedError: Stream is closed `

    opened by zeydabadi 0
Releases(v1.4.10)
  • v1.4.10(Apr 25, 2022)

    Change Log

    v.1.4.10 Changes

    • Added a function to construct features derived from PFS mutual information estimation that should be expected to be linearly related to the target.
    • Fixed a global name conflict in kxy.learning.base_learners.

    v.1.4.9 Changes

    • Change the activation function used by PFS from ReLU to switch/SILU.
    • Leaving it to the user to set the logging level.

    v.1.4.8 Changes

    • Froze the versions of all python packages in the docker file.

    v.1.4.7 Changes

    Changes related to optimizing Principal Feature Selection.

    • Made it easy to change PFS' default learning parameters.
    • Changed PFS' default learning parameters (learning rate is now 0.005 and epsilon 1e-04)
    • Adding a seed parameter to PFS' fit for reproducibility.

    To globally change the learning rate to 0.003, change Adam's epsilon to 1e-5, and the number of epochs to 25, do

    from kxy.misc.tf import set_default_parameter
    set_default_parameter('lr', 0.003)
    set_default_parameter('epsilon', 1e-5)
    set_default_parameter('epochs', 25)
    

    To change the number epochs for a single iteration of PFS, use the epochs argument of the fit method of your PFS object. The fit method now also has a seed parameter you may use to make the PFS implementation deterministic.

    Example:

    from kxy.pfs import PFS
    selector = PFS()
    selector.fit(x, y, epochs=25, seed=123)
    

    Alternatively, you may also use the kxy.misc.tf.set_seed method to make PFS deterministic.

    v.1.4.6 Changes

    Minor PFS improvements.

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.9(Apr 12, 2022)

    Change Log

    v.1.4.9 Changes

    • Change the activation function used by PFS from ReLU to switch/SILU.
    • Leaving it to the user to set the logging level.

    v.1.4.8 Changes

    • Froze the versions of all python packages in the docker file.

    v.1.4.7 Changes

    Changes related to optimizing Principal Feature Selection.

    • Made it easy to change PFS' default learning parameters.
    • Changed PFS' default learning parameters (learning rate is now 0.005 and epsilon 1e-04)
    • Adding a seed parameter to PFS' fit for reproducibility.

    To globally change the learning rate to 0.003, change Adam's epsilon to 1e-5, and the number of epochs to 25, do

    from kxy.misc.tf import set_default_parameter
    set_default_parameter('lr', 0.003)
    set_default_parameter('epsilon', 1e-5)
    set_default_parameter('epochs', 25)
    

    To change the number epochs for a single iteration of PFS, use the epochs argument of the fit method of your PFS object. The fit method now also has a seed parameter you may use to make the PFS implementation deterministic.

    Example:

    from kxy.pfs import PFS
    selector = PFS()
    selector.fit(x, y, epochs=25, seed=123)
    

    Alternatively, you may also use the kxy.misc.tf.set_seed method to make PFS deterministic.

    v.1.4.6 Changes

    Minor PFS improvements.

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.8(Apr 11, 2022)

    Change Log

    v.1.4.8 Changes

    • Froze the versions of all python packages in the docker file.

    v.1.4.7 Changes

    Changes related to optimizing Principal Feature Selection.

    • Made it easy to change PFS' default learning parameters.
    • Changed PFS' default learning parameters (learning rate is now 0.005 and epsilon 1e-04)
    • Adding a seed parameter to PFS' fit for reproducibility.

    To globally change the learning rate to 0.003, change Adam's epsilon to 1e-5, and the number of epochs to 25, do

    from kxy.misc.tf import set_default_parameter
    set_default_parameter('lr', 0.003)
    set_default_parameter('epsilon', 1e-5)
    set_default_parameter('epochs', 25)
    

    To change the number epochs for a single iteration of PFS, use the epochs argument of the fit method of your PFS object. The fit method now also has a seed parameter you may use to make the PFS implementation deterministic.

    Example:

    from kxy.pfs import PFS
    selector = PFS()
    selector.fit(x, y, epochs=25, seed=123)
    

    Alternatively, you may also use the kxy.misc.tf.set_seed method to make PFS deterministic.

    v.1.4.6 Changes

    Minor PFS improvements.

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.7(Apr 10, 2022)

    Change Log

    v.1.4.7 Changes

    Changes related to optimizing Principal Feature Selection.

    • Made it easy to change PFS' default learning parameters.
    • Changed PFS' default learning parameters (learning rate is now 0.005 and epsilon 1e-04)
    • Adding a seed parameter to PFS' fit for reproducibility.

    To globally change the learning rate to 0.003, change Adam's epsilon to 1e-5, and the number of epochs to 25, do

    from kxy.misc.tf import set_default_parameter
    set_default_parameter('lr', 0.003)
    set_default_parameter('epsilon', 1e-5)
    set_default_parameter('epochs', 25)
    

    To change the number epochs for a single iteration of PFS, use the epochs argument of the fit method of your PFS object. The fit method now also has a seed parameter you may use to make the PFS implementation deterministic.

    Example:

    from kxy.pfs import PFS
    selector = PFS()
    selector.fit(x, y, epochs=25, seed=123)
    

    Alternatively, you may also use the kxy.misc.tf.set_seed method to make PFS deterministic.

    v.1.4.6 Changes

    Minor PFS improvements.

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.6(Apr 10, 2022)

    Changes

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.5(Apr 9, 2022)

  • v1.4.4(Apr 8, 2022)

  • v0.3.2(Aug 14, 2020)

  • v0.3.0(Aug 3, 2020)

    Adding a maximum-entropy based classifier (kxy.MaxEntClassifier) and regressor (kxy.MaxEntRegressor) following the scikit-learn signature for fitting and predicting.

    These models estimate the posterior mean E[u_y|x] and the posterior standard deviation sqrt(Var[u_y|x]) for any specific value of x, where the copula-uniform representations (u_y, u_x) follow the maximum-entropy distribution.

    Predictions in the primal are derived from E[u_y|x].

    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Jun 25, 2020)

    • Regression analyses now fully support categorical variables.
    • Foundations for multi-output regressions are laid.
    • Categorical variables are now systematically encoded and treated as continuous, consistent with what's done at the learning stage.
    • Regression and classification are further normalized, and most the compute for classification problems now takes place on the API side, and should be considerably faster.
    Source code(tar.gz)
    Source code(zip)
  • v0.0.18(May 26, 2020)

  • v0.0.16(May 18, 2020)

  • v0.0.15(May 18, 2020)

  • v0.0.14(May 18, 2020)

  • v0.0.13(May 16, 2020)

  • v0.0.11(May 13, 2020)

  • v0.0.10(May 11, 2020)

Owner
KXY Technologies, Inc.
KXY Technologies, Inc.
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Extreme Learning Machine implementation in Python

Python-ELM v0.3 --- ARCHIVED March 2021 --- This is an implementation of the Extreme Learning Machine [1][2] in Python, based on scikit-learn. From

David C. Lambert 511 Dec 20, 2022
CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

ZhihuiYangCS 8 Jun 07, 2022
BASTA: The BAyesian STellar Algorithm

BASTA: BAyesian STellar Algorithm Current stable version: v1.0 Important note: BASTA is developed for Python 3.8, but Python 3.7 should work as well.

BASTA team 16 Nov 15, 2022
Dragonfly is an open source python library for scalable Bayesian optimisation.

Dragonfly is an open source python library for scalable Bayesian optimisation. Bayesian optimisation is used for optimising black-box functions whose

744 Jan 02, 2023
Probabilistic time series modeling in Python

GluonTS - Probabilistic Time Series Modeling in Python GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (

Amazon Web Services - Labs 3.3k Jan 03, 2023
Visualize classified time series data with interactive Sankey plots in Google Earth Engine

sankee Visualize changes in classified time series data with interactive Sankey plots in Google Earth Engine Contents Description Installation Using P

Aaron Zuspan 76 Dec 15, 2022
Binary Classification Problem with Machine Learning

Binary Classification Problem with Machine Learning Solving Approach: 1) Ultimate Goal of the Assignment: This assignment is about solving a binary cl

Dinesh Mali 0 Jan 20, 2022
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023
Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

SDK: Overview of the Kubeflow pipelines service Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on

Kubeflow 3.1k Jan 06, 2023
A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search (Manhattan Distance Heuristic)

A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and the A* Search (using the Manhattan Distance Heuristic)

17 Aug 14, 2022
Simulate & classify transient absorption spectroscopy (TAS) spectral features for bulk semiconducting materials (Post-DFT)

PyTASER PyTASER is a Python (3.9+) library and set of command-line tools for classifying spectral features in bulk materials, post-DFT. The goal of th

Materials Design Group 4 Dec 27, 2022
The Fuzzy Labs guide to the universe of open source MLOps

Open Source MLOps This is the Fuzzy Labs guide to the universe of free and open source MLOps tools. Contents What is MLOps, anyway? Data version contr

Fuzzy Labs 352 Dec 29, 2022
Tutorial for Decision Threshold In Machine Learning.

Decision-Threshold-ML Tutorial for improve skills: 'Decision Threshold In Machine Learning' (from GeeksforGeeks) by Marcus Mariano For more informatio

0 Jan 20, 2022
Titanic Traveller Survivability Prediction

The aim of the mini project is predict whether or not a passenger survived based on attributes such as their age, sex, passenger class, where they embarked and more.

John Phillip 0 Jan 20, 2022
ETNA – time series forecasting framework

ETNA Time Series Library Predict your time series the easiest way Homepage | Documentation | Tutorials | Contribution Guide | Release Notes ETNA is an

Tinkoff.AI 675 Jan 08, 2023
Summer: compartmental disease modelling in Python

Summer: compartmental disease modelling in Python Summer is a Python-based framework for the creation and execution of compartmental (or "state-based"

6 May 13, 2022
Python Machine Learning Jupyter Notebooks (ML website)

Python Machine Learning Jupyter Notebooks (ML website) Dr. Tirthajyoti Sarkar, Fremont, California (Please feel free to connect on LinkedIn here) Also

Tirthajyoti Sarkar 2.6k Jan 03, 2023
PROTEIN EXPRESSION ANALYSIS FOR DOWN SYNDROME

PROTEIN-EXPRESSION-ANALYSIS-FOR-DOWN-SYNDROME Down syndrome (DS) is a chromosomal disorder where organisms have an extra chromosome 21, sometimes know

1 Jan 20, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Jan 09, 2023