A Powerful Serverless Analysis Toolkit That Takes Trial And Error Out of Machine Learning Projects

Overview


KXY: A Seemless API to 10x The Productivity of Machine Learning Engineers

License PyPI Latest Release Downloads

Documentation

https://www.kxy.ai/reference/

Installation

From PyPi:

pip install kxy

From GitHub:

git clone https://github.com/kxytechnologies/kxy-python.git & cd ./kxy-python & pip install .

Authentication

All heavy-duty computations are run on our serverless infrastructure and require an API key. To configure the package with your API key, run

kxy configure

and follow the instructions. To get an API key you need an account; you can sign up for a free trial here. You'll then be automatically given an API key which you can find here.

KXY is free for academic use.

Docker

The Docker image kxytechnologies/kxy has been built for your convenience, and comes with anaconda, auto-sklearn, and the kxy package.

To start a Jupyter Notebook server from a sandboxed Docker environment, run

&& /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''" ">
docker run -i -t -p 5555:8888 kxytechnologies/kxy:latest /bin/bash -c "kxy configure 
   
     && /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''
    "
   

where you should replace with your API key and navigate to http://localhost:5555 in your browser. This docker environment comes with all examples available on the documentation website.

To start a Jupyter Notebook server from an existing directory of notebooks, run

&& /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''" ">
docker run -i -t --mount src=</path/to/your/local/dir>,target=/opt/notebooks,type=bind -p 5555:8888 kxytechnologies/kxy:latest /bin/bash -c "kxy configure 
   
     && /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''
    "
   

where you should replace with the path to your local notebook folder and navigate to http://localhost:5555 in your browser.

Other Programming Language

We plan to release friendly API client in more programming language.

In the meantime, you can directly issue requests to our RESTFul API using your favorite programming language.

You might also like...
Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

SDK: Overview of the Kubeflow pipelines service Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics, detecting change points and anomalies, to forecasting future trends.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A library of extension and helper modules for Python's data analysis and machine learning libraries.
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Comments
  • error in import kxy

    error in import kxy

    Hi, After installing the kxy package and configuring the API key, the import kxy shows the error below:

    .../python3.9/site-packages/kxy/pfs/pfs_selector.py in <module>
          6 import numpy as np
          7 
    ----> 8 import tensorflow as tf
          9 from tensorflow.keras.callbacks import EarlyStopping, TerminateOnNaN
         10 from tensorflow.keras.optimizers import Adam
    
    ModuleNotFoundError: No module named 'tensorflow'
    
    

    what version of tensorflow is needed for kxy to work?

    opened by zeydabadi 2
  • generate_features Documentation?

    generate_features Documentation?

    Is there any documentation on how to use the generate_features function? It doesn't appear in the documentation and I can't find it in the github. e.g. how to use the entity column, how to format time-series data in advance for it, etc'. Thanks!

    opened by ddofer 1
  • error kxy.data_valuation

    error kxy.data_valuation

    Hi, After running chievable_performance_df = X_train_reduced.kxy.data_valuation(target_column='state', problem_type='classification', include_mutual_information=True, anonymize=True) I get the following error and the function does not return anything: `During handling of the above exception, another exception occurred:

    Traceback (most recent call last): File "/usr/lib/python3.9/asyncio/tasks.py", line 258, in __step result = coro.throw(exc) File "/home/lucy/Downloads/general/lib/python3.9/site-packages/tornado/websocket.py", line 1104, in wrapper raise WebSocketClosedError() tornado.websocket.WebSocketClosedError Task exception was never retrieved future: <Task finished name='Task-46004' coro=<WebSocketProtocol13.write_message..wrapper() done, defined at /home/lucy/Downloads/general/lib/python3.9/site-packages/tornado/websocket.py:1100> exception=WebSocketClosedError()> Traceback (most recent call last): File "/home/lucy/Downloads/general/lib/python3.9/site-packages/tornado/websocket.py", line 1102, in wrapper await fut File "/usr/lib/python3.9/asyncio/tasks.py", line 328, in __wakeup future.result() tornado.iostream.StreamClosedError: Stream is closed `

    opened by zeydabadi 0
Releases(v1.4.10)
  • v1.4.10(Apr 25, 2022)

    Change Log

    v.1.4.10 Changes

    • Added a function to construct features derived from PFS mutual information estimation that should be expected to be linearly related to the target.
    • Fixed a global name conflict in kxy.learning.base_learners.

    v.1.4.9 Changes

    • Change the activation function used by PFS from ReLU to switch/SILU.
    • Leaving it to the user to set the logging level.

    v.1.4.8 Changes

    • Froze the versions of all python packages in the docker file.

    v.1.4.7 Changes

    Changes related to optimizing Principal Feature Selection.

    • Made it easy to change PFS' default learning parameters.
    • Changed PFS' default learning parameters (learning rate is now 0.005 and epsilon 1e-04)
    • Adding a seed parameter to PFS' fit for reproducibility.

    To globally change the learning rate to 0.003, change Adam's epsilon to 1e-5, and the number of epochs to 25, do

    from kxy.misc.tf import set_default_parameter
    set_default_parameter('lr', 0.003)
    set_default_parameter('epsilon', 1e-5)
    set_default_parameter('epochs', 25)
    

    To change the number epochs for a single iteration of PFS, use the epochs argument of the fit method of your PFS object. The fit method now also has a seed parameter you may use to make the PFS implementation deterministic.

    Example:

    from kxy.pfs import PFS
    selector = PFS()
    selector.fit(x, y, epochs=25, seed=123)
    

    Alternatively, you may also use the kxy.misc.tf.set_seed method to make PFS deterministic.

    v.1.4.6 Changes

    Minor PFS improvements.

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.9(Apr 12, 2022)

    Change Log

    v.1.4.9 Changes

    • Change the activation function used by PFS from ReLU to switch/SILU.
    • Leaving it to the user to set the logging level.

    v.1.4.8 Changes

    • Froze the versions of all python packages in the docker file.

    v.1.4.7 Changes

    Changes related to optimizing Principal Feature Selection.

    • Made it easy to change PFS' default learning parameters.
    • Changed PFS' default learning parameters (learning rate is now 0.005 and epsilon 1e-04)
    • Adding a seed parameter to PFS' fit for reproducibility.

    To globally change the learning rate to 0.003, change Adam's epsilon to 1e-5, and the number of epochs to 25, do

    from kxy.misc.tf import set_default_parameter
    set_default_parameter('lr', 0.003)
    set_default_parameter('epsilon', 1e-5)
    set_default_parameter('epochs', 25)
    

    To change the number epochs for a single iteration of PFS, use the epochs argument of the fit method of your PFS object. The fit method now also has a seed parameter you may use to make the PFS implementation deterministic.

    Example:

    from kxy.pfs import PFS
    selector = PFS()
    selector.fit(x, y, epochs=25, seed=123)
    

    Alternatively, you may also use the kxy.misc.tf.set_seed method to make PFS deterministic.

    v.1.4.6 Changes

    Minor PFS improvements.

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.8(Apr 11, 2022)

    Change Log

    v.1.4.8 Changes

    • Froze the versions of all python packages in the docker file.

    v.1.4.7 Changes

    Changes related to optimizing Principal Feature Selection.

    • Made it easy to change PFS' default learning parameters.
    • Changed PFS' default learning parameters (learning rate is now 0.005 and epsilon 1e-04)
    • Adding a seed parameter to PFS' fit for reproducibility.

    To globally change the learning rate to 0.003, change Adam's epsilon to 1e-5, and the number of epochs to 25, do

    from kxy.misc.tf import set_default_parameter
    set_default_parameter('lr', 0.003)
    set_default_parameter('epsilon', 1e-5)
    set_default_parameter('epochs', 25)
    

    To change the number epochs for a single iteration of PFS, use the epochs argument of the fit method of your PFS object. The fit method now also has a seed parameter you may use to make the PFS implementation deterministic.

    Example:

    from kxy.pfs import PFS
    selector = PFS()
    selector.fit(x, y, epochs=25, seed=123)
    

    Alternatively, you may also use the kxy.misc.tf.set_seed method to make PFS deterministic.

    v.1.4.6 Changes

    Minor PFS improvements.

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.7(Apr 10, 2022)

    Change Log

    v.1.4.7 Changes

    Changes related to optimizing Principal Feature Selection.

    • Made it easy to change PFS' default learning parameters.
    • Changed PFS' default learning parameters (learning rate is now 0.005 and epsilon 1e-04)
    • Adding a seed parameter to PFS' fit for reproducibility.

    To globally change the learning rate to 0.003, change Adam's epsilon to 1e-5, and the number of epochs to 25, do

    from kxy.misc.tf import set_default_parameter
    set_default_parameter('lr', 0.003)
    set_default_parameter('epsilon', 1e-5)
    set_default_parameter('epochs', 25)
    

    To change the number epochs for a single iteration of PFS, use the epochs argument of the fit method of your PFS object. The fit method now also has a seed parameter you may use to make the PFS implementation deterministic.

    Example:

    from kxy.pfs import PFS
    selector = PFS()
    selector.fit(x, y, epochs=25, seed=123)
    

    Alternatively, you may also use the kxy.misc.tf.set_seed method to make PFS deterministic.

    v.1.4.6 Changes

    Minor PFS improvements.

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.6(Apr 10, 2022)

    Changes

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.5(Apr 9, 2022)

  • v1.4.4(Apr 8, 2022)

  • v0.3.2(Aug 14, 2020)

  • v0.3.0(Aug 3, 2020)

    Adding a maximum-entropy based classifier (kxy.MaxEntClassifier) and regressor (kxy.MaxEntRegressor) following the scikit-learn signature for fitting and predicting.

    These models estimate the posterior mean E[u_y|x] and the posterior standard deviation sqrt(Var[u_y|x]) for any specific value of x, where the copula-uniform representations (u_y, u_x) follow the maximum-entropy distribution.

    Predictions in the primal are derived from E[u_y|x].

    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Jun 25, 2020)

    • Regression analyses now fully support categorical variables.
    • Foundations for multi-output regressions are laid.
    • Categorical variables are now systematically encoded and treated as continuous, consistent with what's done at the learning stage.
    • Regression and classification are further normalized, and most the compute for classification problems now takes place on the API side, and should be considerably faster.
    Source code(tar.gz)
    Source code(zip)
  • v0.0.18(May 26, 2020)

  • v0.0.16(May 18, 2020)

  • v0.0.15(May 18, 2020)

  • v0.0.14(May 18, 2020)

  • v0.0.13(May 16, 2020)

  • v0.0.11(May 13, 2020)

  • v0.0.10(May 11, 2020)

Owner
KXY Technologies, Inc.
KXY Technologies, Inc.
Python package for causal inference using Bayesian structural time-series models.

Python Causal Impact Causal inference using Bayesian structural time-series models. This package aims at defining a python equivalent of the R CausalI

Thomas Cassou 219 Dec 11, 2022
Katana project is a template for ASAP 🚀 ML application deployment

Katana project is a FastAPI template for ASAP 🚀 ML API deployment

Mohammad Shahebaz 100 Dec 26, 2022
AutoX是一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色、简单易用、通用、自动化、灵活。

English | 简体中文 AutoX是什么? AutoX一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色: AutoX在多个kaggle数据集上,效果显著优于其他解决方案(见效果对比)。 简单易用: AutoX的接口和sklearn类似,方便上手使用。

4Paradigm 431 Dec 28, 2022
Spark development environment for k8s

Local Spark Dev Env with Docker Development environment for k8s. Using the spark-operator image to ensure it will be the same environment. Start conta

Otacilio Filho 18 Jan 04, 2022
A logistic regression model for health insurance purchasing prediction

Logistic_Regression_Model A logistic regression model for health insurance purchasing prediction This code is using these packages, so please make sur

ShawnWang 1 Nov 29, 2021
scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly.

scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly. Its main purpose is the transformation of bilinear forms into sparse matrices and linear forms into vectors.

Tom Gustafsson 297 Dec 13, 2022
Simple linear model implementations from scratch.

Hand Crafted Models Simple linear model implementations from scratch. Table of contents Overview Project Structure Getting started Citing this project

Jonathan Sadighian 2 Sep 13, 2021
Pydantic based mock data generation

This library offers powerful mock data generation capabilities for pydantic based models. It can also be used with other libraries that use pydantic as a foundation, for example SQLModel, Beanie and

Na'aman Hirschfeld 396 Dec 28, 2022
In this Repo a simple Sklearn Model will be trained and pushed to MLFlow

SKlearn_to_MLFLow In this Repo a simple Sklearn Model will be trained and pushed to MLFlow Install This Repo is based on poetry python3 -m venv .venv

1 Dec 13, 2021
Bonsai: Gradient Boosted Trees + Bayesian Optimization

Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.

24 Oct 27, 2022
🤖 ⚡ scikit-learn tips

🤖 ⚡ scikit-learn tips New tips are posted on LinkedIn, Twitter, and Facebook. 👉 Sign up to receive 2 video tips by email every week! 👈 List of all

Kevin Markham 1.6k Jan 03, 2023
ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

ArviZ 1.3k Jan 05, 2023
PLUR is a collection of source code datasets suitable for graph-based machine learning.

PLUR (Programming-Language Understanding and Repair) is a collection of source code datasets suitable for graph-based machine learning. We provide scripts for downloading, processing, and loading the

Google Research 76 Nov 25, 2022
Hierarchical Time Series Forecasting using Prophet

htsprophet Hierarchical Time Series Forecasting using Prophet Credit to Rob J. Hyndman and research partners as much of the code was developed with th

Collin Rooney 131 Dec 02, 2022
Magenta: Music and Art Generation with Machine Intelligence

Magenta is a research project exploring the role of machine learning in the process of creating art and music. Primarily this involves developing new

Magenta 18.1k Dec 30, 2022
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
cleanlab is the data-centric ML ops package for machine learning with noisy labels.

cleanlab is the data-centric ML ops package for machine learning with noisy labels. cleanlab cleans labels and supports finding, quantifying, and lear

Cleanlab 51 Nov 28, 2022
This repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

B DEVA DEEKSHITH 1 Nov 03, 2021
Python implementation of the rulefit algorithm

RuleFit Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF) The algorithm can be used f

Christoph Molnar 326 Jan 02, 2023