Simulate & classify transient absorption spectroscopy (TAS) spectral features for bulk semiconducting materials (Post-DFT)

Overview

PyTASER

PyTASER is a Python (3.9+) library and set of command-line tools for classifying spectral features in bulk materials, post-DFT. The goal of this library is to provide qualitative comparisons for experimental TAS spectra - a complex and tedious process, especially for pristine materials. The main features include:

  • An interactive TAS spectrum for a pristine semiconducting material
  • Isolating spectra for individual band transitions from the overall TAS spectrum for the material.
  • Spectra in different conditions: temperature, carrier concentrations (analogous to pump-probe time delay)
  • Identifying partial occupancies of valence and conduction bands, using the Fermi-Dirac distribution for different Quasi-Fermi levels.
  • Considers both non-magnetic and magnetic materials.
  • Taking DFT-calculated bandstructure and dos inputs, with primary support for the Materials Project.

Installation

The recommended way to install PyTASER is in a conda environment.

Installation method to be updated here

PyTASER is currently compatible with Python 3.9+ and relies on a number of open-source python packages, specifically:

Visualisation

Once the library is installed, please setup a file as done in the examples provided. Then just run it as a python file:

python3 filename.py

Contributing

The library is currently undergoing some final changes before it is finalised. However, once it is completed, we would greatly appreciate any contributions in the form of a pull request. Additionally, any test cases/example spectra performed with PyTASER would be welcomed.

Future topics we'd like to build on:

  • Converting between carrier concentrations and pump-probe time delay (for a more quantitative analysis)
  • Incorporating spin-change processes (e.g. moving from Spin.up to Spin.down and vice-versa) for spin-polarised systems
  • Incorporating finite-temperature effects (particularly with indirect bandgaps and phonons, and defects)
  • Incorporating more complex optical processes (e.g. Stimulated Emissions)
  • Cleaning the regions further away from the bandgap
  • Implementing the optical transition probabilities alongside the JDOS
  • Creating a kinetics plot for TAS analysis.
  • Relating spectral features with associated optical processes

Acknowledgements

Developed by Savyasanchi Aggarwal, Alex Ganose and Liam Harnett-Caulfield. Aron Walsh designed and led the project.

Thanks to the WMD group @ Imperial/Yonsei for all the interesting discussions and improvements!

Owner
Materials Design Group
Research group in computational chemistry & physics led by @aronwalsh
Materials Design Group
Reggy - Regressions with arbitrarily complex regularization terms

reggy Regressions with arbitrarily complex regularization terms. Currently suppo

Kim 1 Jan 20, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
Stats, linear algebra and einops for xarray

xarray-einstats Stats, linear algebra and einops for xarray ⚠️ Caution: This project is still in a very early development stage Installation To instal

ArviZ 30 Dec 28, 2022
Regularization and Feature Selection in Least Squares Temporal Difference Learning

Regularization and Feature Selection in Least Squares Temporal Difference Learning Description This is Python implementations of Least Angle Regressio

Mina Parham 0 Jan 18, 2022
a distributed deep learning platform

Apache SINGA Distributed deep learning system http://singa.apache.org Quick Start Installation Examples Issues JIRA tickets Code Analysis: Mailing Lis

The Apache Software Foundation 2.7k Jan 05, 2023
Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

GENDIS GENetic DIscovery of Shapelets In the time series classification domain, shapelets are small subseries that are discriminative for a certain cl

IDLab Services 90 Oct 28, 2022
Drug prediction

I have collected data about a set of patients, all of whom suffered from the same illness. During their course of treatment, each patient responded to one of 5 medications, Drug A, Drug B, Drug c, Dr

Khazar 1 Jan 28, 2022
Transform ML models into a native code with zero dependencies

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code

Bayes' Witnesses 2.3k Jan 03, 2023
Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

141 Dec 27, 2022
Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Priyansh Sharma 7 Nov 09, 2022
A Tools that help Data Scientists and ML engineers train and deploy ML models.

Domino Research This repo contains projects under active development by the Domino R&D team. We build tools that help Data Scientists and ML engineers

Domino Data Lab 73 Oct 17, 2022
Bodywork deploys machine learning projects developed in Python, to Kubernetes.

Bodywork deploys machine learning projects developed in Python, to Kubernetes. It helps you to: serve models as microservices execute batch jobs run r

Bodywork Machine Learning 409 Jan 01, 2023
pandas, scikit-learn, xgboost and seaborn integration

pandas, scikit-learn and xgboost integration.

299 Dec 30, 2022
Project to deploy a machine learning model based on Titanic dataset from Kaggle

kaggle_titanic_deploy Project to deploy a machine learning model based on Titanic dataset from Kaggle In this project we used the Titanic dataset from

Vivian Yamassaki 8 May 23, 2022
XGBoost + Optuna

AutoXGB XGBoost + Optuna: no brainer auto train xgboost directly from CSV files auto tune xgboost using optuna auto serve best xgboot model using fast

abhishek thakur 517 Dec 31, 2022
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
This repository demonstrates the usage of hover to understand and supervise a machine learning task.

Hover Example Apps (works out-of-the-box on Binder) This repository demonstrates the usage of hover to understand and supervise a machine learning tas

Pavel 43 Dec 03, 2021
A visual dataflow programming language for sklearn

Persimmon What is it? Persimmon is a visual dataflow language for creating sklearn pipelines. It represents functions as blocks, inputs and outputs ar

Álvaro Bermejo 194 Jan 04, 2023
Machine Learning from Scratch

Machine Learning from Scratch Author: Shengxuan Wang From: Oregon State University Content: Building Machine Learning model from Scratch, without usin

ShawnWang 0 Jul 05, 2022
Evidently helps analyze machine learning models during validation or production monitoring

Evidently helps analyze machine learning models during validation or production monitoring. The tool generates interactive visual reports and JSON profiles from pandas DataFrame or csv files. Current

Evidently AI 3.1k Jan 07, 2023