AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

Overview

AutoTabular

Paper Conference Conference Conference

AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models tabular data.

autotabular

[Toc]

What's good in it?

  • It is using the RAPIDS as back-end support, gives you the ability to execute end-to-end data science and analytics pipelines entirely on GPUs.
  • It Supports many anomaly detection models: ,
  • It using meta learning to accelerate model selection and parameter tuning.
  • It is using many Deep Learning models for tabular data: Wide&Deep, DCN(Deep & Cross Network), FM, DeepFM, PNN ...
  • It is using many machine learning algorithms: Baseline, Linear, Random Forest, Extra Trees, LightGBM, Xgboost, CatBoost, and Nearest Neighbors.
  • It can compute Ensemble based on greedy algorithm from Caruana paper.
  • It can stack models to build level 2 ensemble (available in Compete mode or after setting stack_models parameter).
  • It can do features preprocessing, like: missing values imputation and converting categoricals. What is more, it can also handle target values preprocessing.
  • It can do advanced features engineering, like: Golden Features, Features Selection, Text and Time Transformations.
  • It can tune hyper-parameters with not-so-random-search algorithm (random-search over defined set of values) and hill climbing to fine-tune final models.

Installation

The sources for AutoTabular can be downloaded from the Github repo.

You can either clone the public repository:

# clone project
git clone https://apulis-gitlab.apulis.cn/apulis/AutoTabular/autotabular.git
# First, install dependencies
pip install -r requirements.txt

Once you have a copy of the source, you can install it with:

python setup.py install

Example

Next, navigate to any file and run it.

# module folder
cd example

# run module (example: mnist as your main contribution)
python binary_classifier_Titanic.py

Auto Feature generate & Selection

TODO

Deep Feature Synthesis

import featuretools as ft
import pandas as pd
from sklearn.datasets import load_iris

# Load data and put into dataframe
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['species'] = iris.target
df['species'] = df['species'].map({
    0: 'setosa',
    1: 'versicolor',
    2: 'virginica'
})
# Make an entityset and add the entity
es = ft.EntitySet()
es.add_dataframe(
    dataframe_name='data', dataframe=df, make_index=True, index='index')
# Run deep feature synthesis with transformation primitives
feature_matrix, feature_defs = ft.dfs(
    entityset=es,
    max_depth=3,
    target_dataframe_name='data',
    agg_primitives=['mode', 'mean', 'max', 'count'],
    trans_primitives=[
        'add_numeric', 'multiply_numeric', 'cum_min', 'cum_mean', 'cum_max'
    ],
    groupby_trans_primitives=['cum_sum'])

print(feature_defs)
print(feature_matrix.head())
print(feature_matrix.ww)

GBDT Feature Generate

from autofe.feature_engineering.gbdt_feature import CatboostFeatureTransformer, GBDTFeatureTransformer, LightGBMFeatureTransformer, XGBoostFeatureTransformer

titanic = pd.read_csv('autotabular/datasets/data/Titanic.csv')
# 'Embarked' is stored as letters, so fit a label encoder to the train set to use in the loop
embarked_encoder = LabelEncoder()
embarked_encoder.fit(titanic['Embarked'].fillna('Null'))
# Record anyone travelling alone
titanic['Alone'] = (titanic['SibSp'] == 0) & (titanic['Parch'] == 0)
# Transform 'Embarked'
titanic['Embarked'].fillna('Null', inplace=True)
titanic['Embarked'] = embarked_encoder.transform(titanic['Embarked'])
# Transform 'Sex'
titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 0
titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 1
titanic['Sex'] = titanic['Sex'].astype('int8')
# Drop features that seem unusable. Save passenger ids if test
titanic.drop(['Name', 'Ticket', 'Cabin'], axis=1, inplace=True)

trainMeans = titanic.groupby(['Pclass', 'Sex'])['Age'].mean()

def f(x):
    if not np.isnan(x['Age']):  # not NaN
        return x['Age']
    return trainMeans[x['Pclass'], x['Sex']]

titanic['Age'] = titanic.apply(f, axis=1)
rows = titanic.shape[0]
n_train = int(rows * 0.77)
train_data = titanic[:n_train, :]
test_data = titanic[n_train:, :]

X_train = titanic.drop(['Survived'], axis=1)
y_train = titanic['Survived']

clf = XGBoostFeatureTransformer(task='classification')
clf.fit(X_train, y_train)
result = clf.concate_transform(X_train)
print(result)

clf = LightGBMFeatureTransformer(task='classification')
clf.fit(X_train, y_train)
result = clf.concate_transform(X_train)
print(result)

clf = GBDTFeatureTransformer(task='classification')
clf.fit(X_train, y_train)
result = clf.concate_transform(X_train)
print(result)

clf = CatboostFeatureTransformer(task='classification')
clf.fit(X_train, y_train)
result = clf.concate_transform(X_train)
print(result)

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score

lr = LogisticRegression()
x_train_gb, x_test_gb, y_train_gb, y_test_gb = train_test_split(
    result, y_train)
x_train, x_test, y_train, y_test = train_test_split(X_train, y_train)

lr.fit(x_train, y_train)
score = roc_auc_score(y_test, lr.predict(x_test))
print('LR with GBDT apply data, train data shape : {0}  auc: {1}'.format(
    x_train.shape, score))

lr = LogisticRegression()
lr.fit(x_train_gb, y_train_gb)
score = roc_auc_score(y_test_gb, lr.predict(x_test_gb))
print('LR with GBDT apply data, train data shape : {0}  auc: {1}'.format(
    x_train_gb.shape, score))

Golden Feature Generate

from autofe import GoldenFeatureTransform

titanic = pd.read_csv('autotabular/datasets/data/Titanic.csv')
embarked_encoder = LabelEncoder()
embarked_encoder.fit(titanic['Embarked'].fillna('Null'))
# Record anyone travelling alone
titanic['Alone'] = (titanic['SibSp'] == 0) & (titanic['Parch'] == 0)
# Transform 'Embarked'
titanic['Embarked'].fillna('Null', inplace=True)
titanic['Embarked'] = embarked_encoder.transform(titanic['Embarked'])
# Transform 'Sex'
titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 0
titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 1
titanic['Sex'] = titanic['Sex'].astype('int8')
# Drop features that seem unusable. Save passenger ids if test
titanic.drop(['Name', 'Ticket', 'Cabin'], axis=1, inplace=True)

trainMeans = titanic.groupby(['Pclass', 'Sex'])['Age'].mean()

def f(x):
    if not np.isnan(x['Age']):  # not NaN
        return x['Age']
    return trainMeans[x['Pclass'], x['Sex']]

titanic['Age'] = titanic.apply(f, axis=1)

X_train = titanic.drop(['Survived'], axis=1)
y_train = titanic['Survived']
print(X_train)
gbdt_model = GoldenFeatureTransform(
    results_path='./', ml_task='BINARY_CLASSIFICATION')
gbdt_model.fit(X_train, y_train)
results = gbdt_model.transform(X_train)
print(results)

Neural Network Embeddings

# data url
"""https://www.kaggle.com/c/house-prices-advanced-regression-techniques."""
data_dir = '/media/robin/DATA/datatsets/structure_data/house_price/train.csv'
data = pd.read_csv(
    data_dir,
    usecols=[
        'SalePrice', 'MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea',
        'Street', 'YearBuilt', 'LotShape', '1stFlrSF', '2ndFlrSF'
    ]).dropna()

categorical_features = [
    'MSSubClass', 'MSZoning', 'Street', 'LotShape', 'YearBuilt'
]
output_feature = 'SalePrice'
label_encoders = {}
for cat_col in categorical_features:
    label_encoders[cat_col] = LabelEncoder()
    data[cat_col] = label_encoders[cat_col].fit_transform(data[cat_col])

dataset = TabularDataset(
    data=data, cat_cols=categorical_features, output_col=output_feature)

batchsize = 64
dataloader = DataLoader(dataset, batchsize, shuffle=True, num_workers=1)

cat_dims = [int(data[col].nunique()) for col in categorical_features]
emb_dims = [(x, min(50, (x + 1) // 2)) for x in cat_dims]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = FeedForwardNN(
    emb_dims,
    no_of_cont=4,
    lin_layer_sizes=[50, 100],
    output_size=1,
    emb_dropout=0.04,
    lin_layer_dropouts=[0.001, 0.01]).to(device)
print(model)
num_epochs = 100
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
for epoch in range(num_epochs):
    for y, cont_x, cat_x in dataloader:
        cat_x = cat_x.to(device)
        cont_x = cont_x.to(device)
        y = y.to(device)
        # Forward Pass
        preds = model(cont_x, cat_x)
        loss = criterion(preds, y)
        # Backward Pass and Optimization
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print('loss:', loss)

License

This library is licensed under the Apache 2.0 License.

Contributing to AutoTabular

We are actively accepting code contributions to the AutoTabular project. If you are interested in contributing to AutoTabular, please contact me.

Owner
wenqi
Learning is all you need!
wenqi
A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Demand-Forecasting Business Problem A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Ayşe Nur Türkaslan 3 Mar 06, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

SUN Group @ UMN 28 Aug 03, 2022
Python/Sage Tool for deriving Scattering Matrices for WDF R-Adaptors

R-Solver A Python tools for deriving R-Type adaptors for Wave Digital Filters. This code is not quite production-ready. If you are interested in contr

8 Sep 19, 2022
Scikit-learn compatible wrapper of the Random Bits Forest program written by (Wang et al., 2016)

sklearn-compatible Random Bits Forest Scikit-learn compatible wrapper of the Random Bits Forest program written by Wang et al., 2016, available as a b

Tamas Madl 8 Jul 24, 2021
Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Sean Zahller 1 Feb 04, 2022
Python module for performing linear regression for data with measurement errors and intrinsic scatter

Linear regression for data with measurement errors and intrinsic scatter (BCES) Python module for performing robust linear regression on (X,Y) data po

Rodrigo Nemmen 56 Sep 27, 2022
A Streamlit demo to interactively visualize Uber pickups in New York City

Streamlit Demo: Uber Pickups in New York City A Streamlit demo written in pure Python to interactively visualize Uber pickups in New York City. View t

Streamlit 230 Dec 28, 2022
Repository for DCA0305, an undergraduate course about Machine Learning Workflows and Pipelines

Federal University of Rio Grande do Norte Technology Center Department of Computer Engineering and Automation Machine Learning Based Systems Design Re

Ivanovitch Silva 81 Oct 18, 2022
Breast-Cancer-Classification - Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms

Breast-Cancer-Classification - Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms

Mert Sezer Ardal 1 Jan 31, 2022
A webpage that utilizes machine learning to extract sentiments from tweets.

Tweets_Classification_Webpage The goal of this project is to be able to predict what rating customers on social media platforms would give to products

Ayaz Nakhuda 1 Dec 30, 2021
A machine learning project that predicts the price of used cars in the UK

Car Price Prediction Image Credit: AA Cars Project Overview Scraped 3000 used cars data from AA Cars website using Python and BeautifulSoup. Cleaned t

Victor Umunna 7 Oct 13, 2022
A Python library for choreographing your machine learning research.

A Python library for choreographing your machine learning research.

AI2 270 Jan 06, 2023
SIMD-accelerated bitwise hamming distance Python module for hexidecimal strings

hexhamming What does it do? This module performs a fast bitwise hamming distance of two hexadecimal strings. This looks like: DEADBEEF = 1101111010101

Michael Recachinas 12 Oct 14, 2022
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRerank, Seq2Slate.

LibRerank LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRer

126 Dec 28, 2022
🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

Real-time water systems lab 416 Jan 06, 2023
Programming assignments and quizzes from all courses within the Machine Learning Engineering for Production (MLOps) specialization offered by deeplearning.ai

Machine Learning Engineering for Production (MLOps) Specialization on Coursera (offered by deeplearning.ai) Programming assignments from all courses i

Aman Chadha 173 Jan 05, 2023
Data Version Control or DVC is an open-source tool for data science and machine learning projects

Continuous Machine Learning project integration with DVC Data Version Control or DVC is an open-source tool for data science and machine learning proj

Azaria Gebremichael 2 Jul 29, 2021
slim-python is a package to learn customized scoring systems for decision-making problems.

slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p

Berk Ustun 37 Nov 02, 2022