决策树分类与回归模型的实现和可视化

Overview

DecisionTree

决策树分类与回归模型,以及可视化

ID3

ID3决策树是最朴素的决策树分类器:

  • 无剪枝
  • 只支持离散属性
  • 采用信息增益准则

data.py中,我们记录了一个小的西瓜数据集,用于离散属性的二分类任务。我们可以像下面这样训练一个ID3决策树分类器:

from ID3 import ID3Classifier
from data import load_watermelon2
import numpy as np

X, y = load_watermelon2(return_X_y=True) # 函数参数仿照sklearn.datasets
model = ID3Classifier()
model.fit(X, y)
pred = model.predict(X)
print(np.mean(pred == y))

输出1.0,说明我们生成的决策树是正确的。

C4.5

C4.5决策树分类器对ID3进行了改进:

  • 用信息增益率的启发式方法来选择划分特征;
  • 能够处理离散型和连续型的属性类型,即将连续型的属性进行离散化处理;
  • 剪枝;
  • 能够处理具有缺失属性值的训练数据;

我们实现了前两点,以及第三点中的预剪枝功能(超参数)

data.py中还有一个连续离散特征混合的西瓜数据集,我们用它来测试C4.5决策树的效果:

from C4_5 import C4_5Classifier
from data import load_watermelon3
import numpy as np

X, y = load_watermelon3(return_X_y=True) # 函数参数仿照sklearn.datasets
model = C4_5Classifier()
model.fit(X, y)
pred = model.predict(X)
print(np.mean(pred == y))

输出1.0,说明我们生成的决策树正确.

CART

分类

CART(Classification and Regression Tree)是C4.5决策树的扩展,支持分类和回归。CART分类树算法使用基尼系数选择特征,此外对于离散特征,CART决策树在每个节点二分划分,缓解了过拟合。

这里我们用sklearn中的鸢尾花数据集测试:

from CART import CARTClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

X, y = load_iris(return_X_y=True)
train_X, test_X, train_y, test_y = train_test_split(X, y, train_size=0.7)
model = CARTClassifier()
model.fit(train_X, train_y)
pred = model.predict(test_X)
print(accuracy_score(test_y, pred))

准确率95.55%。

回归

CARTRegressor类实现了决策树回归,以sklearn的波士顿数据集为例:

from CART import CARTRegressor
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

X, y = load_boston(return_X_y=True)
train_X, test_X, train_y, test_y = train_test_split(X, y, train_size=0.7)
model = CARTRegressor()
model.fit(train_X, train_y)
pred = model.predict(test_X)
print(mean_squared_error(test_y, pred))

输出26.352171052631576,sklearn决策树回归的Baseline是22.46,性能近似,说明我们的实现正确。

决策树绘制

分类树

利用python3的graphviz第三方库和Graphviz(需要安装),我们可以将决策树可视化:

from plot import tree_plot
from CART import CARTClassifier
from sklearn.datasets import load_iris

X, y = load_iris(return_X_y=True)
model = CARTClassifier()
model.fit(X, y)
tree_plot(model)

运行,文件夹中生成tree.png

iris_tree

如果提供了特征的名词和标签的名称,决策树会更明显:

from plot import tree_plot
from CART import CARTClassifier
from sklearn.datasets import load_iris

iris = load_iris()
model = CARTClassifier()
model.fit(iris.data, iris.target)
tree_plot(model,
          filename="tree2",
          feature_names=iris.feature_names,
          target_names=iris.target_names)

iris_tree2

绘制西瓜数据集2对应的ID3决策树:

from plot import tree_plot
from ID3 import ID3Classifier
from data import load_watermelon2

watermelon = load_watermelon2()
model = ID3Classifier()
model.fit(watermelon.data, watermelon.target)
tree_plot(
    model,
    filename="tree",
    font="SimHei",
    feature_names=watermelon.feature_names,
    target_names=watermelon.target_names,
)

这里要自定义字体,否则无法显示中文:

watermelon

回归树

用同样的方法,我们可以进行回归树的绘制:

from plot import tree_plot
from ID3 import ID3Classifier
from sklearn.datasets import load_boston

boston = load_boston()
model = ID3Classifier(max_depth=5)
model.fit(boston.data, boston.target)
tree_plot(
    model,
    feature_names=boston.feature_names,
)

由于生成的回归树很大,我们限制最大深度再绘制:

regression

调参

CART和C4.5都是有超参数的,我们让它们作为sklearn.base.BaseEstimator的派生类,借助sklearn的GridSearchCV,就可以实现调参:

from plot import tree_plot
from CART import CARTClassifier
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split, GridSearchCV

wine = load_wine()
train_X, test_X, train_y, test_y = train_test_split(
    wine.data,
    wine.target,
    train_size=0.7,
)
model = CARTClassifier()
grid_param = {
    'max_depth': [2, 4, 6, 8, 10],
    'min_samples_leaf': [1, 3, 5, 7],
}

search = GridSearchCV(model, grid_param, n_jobs=4, verbose=5)
search.fit(train_X, train_y)
best_model = search.best_estimator_
print(search.best_params_, search.best_estimator_.score(test_X, test_y))
tree_plot(
    best_model,
    feature_names=wine.feature_names,
    target_names=wine.target_names,
)

输出最优参数和最优模型在测试集上的表现:

{'max_depth': 4, 'min_samples_leaf': 3} 0.8518518518518519

绘制对应的决策树:

wine

剪枝

在ID3和CART回归中加入了REP剪枝,C4.5则支持了PEP剪枝。

对IRIS数据集训练后的决策树进行PEP剪枝:

iris = load_iris()
model = C4_5Classifier()
X, y = iris.data, iris.target
train_X, test_X, train_y, test_y = train_test_split(X, y, train_size=0.7)
model.fit(train_X, train_y)
print(model.score(test_X, test_y))
tree_plot(model,
          filename="src/pre_prune",
          feature_names=iris.feature_names,
          target_names=iris.target_names)
model.pep_pruning()
print(model.score(test_X, test_y))
tree_plot(model,
          filename="src/post_prune",
          feature_names=iris.feature_names,
          target_names=iris.target_names,
)

剪枝前后的准确率分别为97.78%,100%,即泛化性能的提升:

prepre

Owner
Welt Xing
Undergraduate in AI school, Nanjing University. Main interest(for now): Machine learning and deep learning.
Welt Xing
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
Code Repository for Machine Learning with PyTorch and Scikit-Learn

Code Repository for Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka 1.4k Jan 03, 2023
MLR - Machine Learning Research

Machine Learning Research 1. Project Topic 1.1. Exsiting research Benmark: https://paperswithcode.com/sota ACL anthology for NLP papers: http://www.ac

Charles 69 Oct 20, 2022
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
Flask app to predict daily radiation from the time series of Solcast from Islamabad, Pakistan

Solar-radiation-ISB-MLOps - Flask app to predict daily radiation from the time series of Solcast from Islamabad, Pakistan.

Abid Ali Awan 1 Dec 31, 2021
A machine learning project that predicts the price of used cars in the UK

Car Price Prediction Image Credit: AA Cars Project Overview Scraped 3000 used cars data from AA Cars website using Python and BeautifulSoup. Cleaned t

Victor Umunna 7 Oct 13, 2022
cleanlab is the data-centric ML ops package for machine learning with noisy labels.

cleanlab is the data-centric ML ops package for machine learning with noisy labels. cleanlab cleans labels and supports finding, quantifying, and lear

Cleanlab 51 Nov 28, 2022
Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and Python functions.

Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and many other libraries. Documenta

2.5k Jan 07, 2023
🔬 A curated list of awesome machine learning strategies & tools in financial market.

🔬 A curated list of awesome machine learning strategies & tools in financial market.

GeorgeZou 1.6k Dec 30, 2022
Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas.

Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas. Its objective is to ex

Taylor G Smith 54 Aug 20, 2022
Official code for HH-VAEM

HH-VAEM This repository contains the official Pytorch implementation of the Hierarchical Hamiltonian VAE for Mixed-type Data (HH-VAEM) model and the s

Ignacio Peis 8 Nov 30, 2022
neurodsp is a collection of approaches for applying digital signal processing to neural time series

neurodsp is a collection of approaches for applying digital signal processing to neural time series, including algorithms that have been proposed for the analysis of neural time series. It also inclu

NeuroDSP 224 Dec 02, 2022
List of Data Science Cheatsheets to rule the world

Data Science Cheatsheets List of Data Science Cheatsheets to rule the world. Table of Contents Business Science Business Science Problem Framework Dat

Favio André Vázquez 11.7k Dec 30, 2022
Dragonfly is an open source python library for scalable Bayesian optimisation.

Dragonfly is an open source python library for scalable Bayesian optimisation. Bayesian optimisation is used for optimising black-box functions whose

744 Jan 02, 2023
Automated Time Series Forecasting

AutoTS AutoTS is a time series package for Python designed for rapidly deploying high-accuracy forecasts at scale. There are dozens of forecasting mod

Colin Catlin 652 Jan 03, 2023
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

Simple and flexible ML workflow engine.

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable wit

Katana ML 295 Jan 06, 2023
A Python package for time series classification

pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat

Johann Faouzi 1.4k Jan 01, 2023
A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search (Manhattan Distance Heuristic)

A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and the A* Search (using the Manhattan Distance Heuristic)

17 Aug 14, 2022
Python Automated Machine Learning library for tabular data.

Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Scie

Daniel Khromov 47 Dec 17, 2022