决策树分类与回归模型的实现和可视化

Overview

DecisionTree

决策树分类与回归模型,以及可视化

ID3

ID3决策树是最朴素的决策树分类器:

  • 无剪枝
  • 只支持离散属性
  • 采用信息增益准则

data.py中,我们记录了一个小的西瓜数据集,用于离散属性的二分类任务。我们可以像下面这样训练一个ID3决策树分类器:

from ID3 import ID3Classifier
from data import load_watermelon2
import numpy as np

X, y = load_watermelon2(return_X_y=True) # 函数参数仿照sklearn.datasets
model = ID3Classifier()
model.fit(X, y)
pred = model.predict(X)
print(np.mean(pred == y))

输出1.0,说明我们生成的决策树是正确的。

C4.5

C4.5决策树分类器对ID3进行了改进:

  • 用信息增益率的启发式方法来选择划分特征;
  • 能够处理离散型和连续型的属性类型,即将连续型的属性进行离散化处理;
  • 剪枝;
  • 能够处理具有缺失属性值的训练数据;

我们实现了前两点,以及第三点中的预剪枝功能(超参数)

data.py中还有一个连续离散特征混合的西瓜数据集,我们用它来测试C4.5决策树的效果:

from C4_5 import C4_5Classifier
from data import load_watermelon3
import numpy as np

X, y = load_watermelon3(return_X_y=True) # 函数参数仿照sklearn.datasets
model = C4_5Classifier()
model.fit(X, y)
pred = model.predict(X)
print(np.mean(pred == y))

输出1.0,说明我们生成的决策树正确.

CART

分类

CART(Classification and Regression Tree)是C4.5决策树的扩展,支持分类和回归。CART分类树算法使用基尼系数选择特征,此外对于离散特征,CART决策树在每个节点二分划分,缓解了过拟合。

这里我们用sklearn中的鸢尾花数据集测试:

from CART import CARTClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

X, y = load_iris(return_X_y=True)
train_X, test_X, train_y, test_y = train_test_split(X, y, train_size=0.7)
model = CARTClassifier()
model.fit(train_X, train_y)
pred = model.predict(test_X)
print(accuracy_score(test_y, pred))

准确率95.55%。

回归

CARTRegressor类实现了决策树回归,以sklearn的波士顿数据集为例:

from CART import CARTRegressor
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

X, y = load_boston(return_X_y=True)
train_X, test_X, train_y, test_y = train_test_split(X, y, train_size=0.7)
model = CARTRegressor()
model.fit(train_X, train_y)
pred = model.predict(test_X)
print(mean_squared_error(test_y, pred))

输出26.352171052631576,sklearn决策树回归的Baseline是22.46,性能近似,说明我们的实现正确。

决策树绘制

分类树

利用python3的graphviz第三方库和Graphviz(需要安装),我们可以将决策树可视化:

from plot import tree_plot
from CART import CARTClassifier
from sklearn.datasets import load_iris

X, y = load_iris(return_X_y=True)
model = CARTClassifier()
model.fit(X, y)
tree_plot(model)

运行,文件夹中生成tree.png

iris_tree

如果提供了特征的名词和标签的名称,决策树会更明显:

from plot import tree_plot
from CART import CARTClassifier
from sklearn.datasets import load_iris

iris = load_iris()
model = CARTClassifier()
model.fit(iris.data, iris.target)
tree_plot(model,
          filename="tree2",
          feature_names=iris.feature_names,
          target_names=iris.target_names)

iris_tree2

绘制西瓜数据集2对应的ID3决策树:

from plot import tree_plot
from ID3 import ID3Classifier
from data import load_watermelon2

watermelon = load_watermelon2()
model = ID3Classifier()
model.fit(watermelon.data, watermelon.target)
tree_plot(
    model,
    filename="tree",
    font="SimHei",
    feature_names=watermelon.feature_names,
    target_names=watermelon.target_names,
)

这里要自定义字体,否则无法显示中文:

watermelon

回归树

用同样的方法,我们可以进行回归树的绘制:

from plot import tree_plot
from ID3 import ID3Classifier
from sklearn.datasets import load_boston

boston = load_boston()
model = ID3Classifier(max_depth=5)
model.fit(boston.data, boston.target)
tree_plot(
    model,
    feature_names=boston.feature_names,
)

由于生成的回归树很大,我们限制最大深度再绘制:

regression

调参

CART和C4.5都是有超参数的,我们让它们作为sklearn.base.BaseEstimator的派生类,借助sklearn的GridSearchCV,就可以实现调参:

from plot import tree_plot
from CART import CARTClassifier
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split, GridSearchCV

wine = load_wine()
train_X, test_X, train_y, test_y = train_test_split(
    wine.data,
    wine.target,
    train_size=0.7,
)
model = CARTClassifier()
grid_param = {
    'max_depth': [2, 4, 6, 8, 10],
    'min_samples_leaf': [1, 3, 5, 7],
}

search = GridSearchCV(model, grid_param, n_jobs=4, verbose=5)
search.fit(train_X, train_y)
best_model = search.best_estimator_
print(search.best_params_, search.best_estimator_.score(test_X, test_y))
tree_plot(
    best_model,
    feature_names=wine.feature_names,
    target_names=wine.target_names,
)

输出最优参数和最优模型在测试集上的表现:

{'max_depth': 4, 'min_samples_leaf': 3} 0.8518518518518519

绘制对应的决策树:

wine

剪枝

在ID3和CART回归中加入了REP剪枝,C4.5则支持了PEP剪枝。

对IRIS数据集训练后的决策树进行PEP剪枝:

iris = load_iris()
model = C4_5Classifier()
X, y = iris.data, iris.target
train_X, test_X, train_y, test_y = train_test_split(X, y, train_size=0.7)
model.fit(train_X, train_y)
print(model.score(test_X, test_y))
tree_plot(model,
          filename="src/pre_prune",
          feature_names=iris.feature_names,
          target_names=iris.target_names)
model.pep_pruning()
print(model.score(test_X, test_y))
tree_plot(model,
          filename="src/post_prune",
          feature_names=iris.feature_names,
          target_names=iris.target_names,
)

剪枝前后的准确率分别为97.78%,100%,即泛化性能的提升:

prepre

Owner
Welt Xing
Undergraduate in AI school, Nanjing University. Main interest(for now): Machine learning and deep learning.
Welt Xing
A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Demand-Forecasting Business Problem A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Ayşe Nur Türkaslan 3 Mar 06, 2022
LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRerank, Seq2Slate.

LibRerank LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRer

126 Dec 28, 2022
A data preprocessing and feature engineering script for a machine learning pipeline is prepared.

FEATURE ENGINEERING Business Problem: A data preprocessing and feature engineering script for a machine learning pipeline needs to be prepared. It is

Pinar Oner 7 Dec 18, 2021
Anytime Learning At Macroscale

On Anytime Learning At Macroscale Learning from sequential data dumps (key) Requirements Python 3.7 Pytorch 1.9.0 Hydra 1.1.0 (pip install hydra-core

Meta Research 8 Mar 29, 2022
Simulation of early COVID-19 using SIR model and variants (SEIR ...).

COVID-19-simulation Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO)

José Paulo Pereira das Dores Savioli 1 Nov 17, 2021
fMRIprep Pipeline To Machine Learning

fMRIprep Pipeline To Machine Learning(Demo) 所有配置均在config.py文件下定义 前置环境(lilab) 各个节点均安装docker,并有fmripre的镜像 可以使用conda中的base环境(相应的第三份包之后更新) 1. fmriprep scr

Alien 3 Mar 08, 2022
pymc-learn: Practical Probabilistic Machine Learning in Python

pymc-learn: Practical Probabilistic Machine Learning in Python Contents: Github repo What is pymc-learn? Quick Install Quick Start Index What is pymc-

pymc-learn 196 Dec 07, 2022
MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

SUPSI-DACD-ISAAC 61 Dec 19, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Jan 05, 2023
100 Days of Machine and Deep Learning Code

💯 Days of Machine Learning and Deep Learning Code MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Cluste

Tanishq Gautam 66 Nov 02, 2022
Uplift modeling and causal inference with machine learning algorithms

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 3.7k Jan 07, 2023
This is the code repository for Interpretable Machine Learning with Python, published by Packt.

Interpretable Machine Learning with Python, published by Packt

Packt 299 Jan 02, 2023
A Python Package to Tackle the Curse of Imbalanced Datasets in Machine Learning

imbalanced-learn imbalanced-learn is a python package offering a number of re-sampling techniques commonly used in datasets showing strong between-cla

6.2k Jan 01, 2023
Lingtrain Alignment Studio is an ML based app for texts alignment on different languages.

Lingtrain Alignment Studio Intro Lingtrain Alignment Studio is the ML based app for accurate texts alignment on different languages. Extracts parallel

Sergei Averkiev 186 Jan 03, 2023
CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

SmartSim Example Zoo This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning appl

Cray Labs 14 Mar 30, 2022
A library to generate synthetic time series data by easy-to-use factors and generator

timeseries-generator This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_ge

Nike Inc. 87 Dec 20, 2022
A Pythonic framework for threat modeling

pytm: A Pythonic framework for threat modeling Introduction Traditional threat modeling too often comes late to the party, or sometimes not at all. In

Izar Tarandach 644 Dec 20, 2022
To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

Astitva Veer Garg 1 Jan 11, 2022
A library of sklearn compatible categorical variable encoders

Categorical Encoding Methods A set of scikit-learn-style transformers for encoding categorical variables into numeric by means of different techniques

2.1k Jan 07, 2023
A Python library for detecting patterns and anomalies in massive datasets using the Matrix Profile

matrixprofile-ts matrixprofile-ts is a Python 2 and 3 library for evaluating time series data using the Matrix Profile algorithms developed by the Keo

Target 696 Dec 26, 2022