LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms

Overview

LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms

Based on the work by Smith et al. (2021)

Querying both structured and unstructured data via a single common query interface such as SQL or natural language has been a long standing research goal. Moreover, as methods for extracting information from unstructured data become ever more powerful, the desire to integrate the output of such extraction processes with "clean", structured data grows. We are convinced that for successful integration into databases, such extracted information in the form of "triples" needs to be both 1) of high quality and 2) have the necessary generality to link up with varying forms of structured data. It is the combination of both these aspects, which heretofore have been usually treated in isolation, where our approach breaks new ground.

The cornerstone of our work is a novel, generic method for extracting open information triples from unstructured text, using a combination of linguistics and learning-based extraction methods, thus uniquely balancing both precision and recall. Our system called LILLIE (LInked Linguistics and Learning-Based Information Extractor) uses dependency tree modification rules to refine triples from a high-recall learning-based engine, and combines them with syntactic triples from a high-precision engine to increase effectiveness. In addition, our system features several augmentations, which modify the generality and the degree of granularity of the output triples. Even though our focus is on addressing both quality and generality simultaneously, our new method substantially outperforms current state-of-the-art systems on the two widely-used CaRB and Re-OIE16 benchmark sets for information extraction.

Installation

Requires Python 3.6.9.

  1. pip install -r requirements.txt
  2. python3 -m spacy download en_core_web_md
  3. Clone ClausIE to ./learning_based/pyclausie (https://github.com/AnthonyMRios/pyclausie)
  4. Install with: cd ./learning_based/pyclausie python3 setup.py install
  5. Clone OpenIE5 to ./learning_based/OpenIE-Standalone (https://github.com/dair-iitd/OpenIE-standalone)
  6. Run OIE5 with: cd ./learning_based/OpenIE-standalone java -Xmx16g -jar openie-assembly-5.0-SNAPSHOT.jar --httpPort 9000
  7. Download Stanford CoreNLP Server 3.9.2 to ./rule_based/parser (https://stanfordnlp.github.io/CoreNLP/history.html)
  8. Run the parser: java -mx6g -cp "./rule_based/parser/*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer -port 10000 -timeout 30000
  9. Run the learning-based extractor: python3 ./learning_based/paralleloie.py -i data/pubmedabstracts.json
  10. Run the rule-based extractor-refiner: python3 ./rule_based/extract_refine.py -i extracted_triples_learning.csv
Simple structured learning framework for python

PyStruct PyStruct aims at being an easy-to-use structured learning and prediction library. Currently it implements only max-margin methods and a perce

pystruct 666 Jan 03, 2023
[HELP REQUESTED] Generalized Additive Models in Python

pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized

daniel servén 747 Jan 05, 2023
scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly.

scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly. Its main purpose is the transformation of bilinear forms into sparse matrices and linear forms into vectors.

Tom Gustafsson 297 Dec 13, 2022
A Python step-by-step primer for Machine Learning and Optimization

early-ML Presentation General Machine Learning tutorials A Python step-by-step primer for Machine Learning and Optimization This github repository gat

Dimitri Bettebghor 8 Dec 01, 2022
ETNA is an easy-to-use time series forecasting framework.

ETNA is an easy-to-use time series forecasting framework. It includes built in toolkits for time series preprocessing, feature generation, a variety of predictive models with unified interface - from

Tinkoff.AI 674 Jan 07, 2023
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 663 Dec 31, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

Igor Ivanov 671 Dec 25, 2022
About Solve CTF offline disconnection problem - based on python3's small crawler

About Solve CTF offline disconnection problem - based on python3's small crawler, support keyword search and local map bed establishment, currently support Jianshu, xianzhi,anquanke,freebuf,seebug

天河 32 Oct 25, 2022
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just

wenqi 2 Jun 26, 2022
This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
A Python Module That Uses ANN To Predict A Stocks Price And Also Provides Accurate Technical Analysis With Many High Potential Implementations!

Stox A Module to predict the "close price" for the next day and give "technical analysis". It uses a Neural Network and the LSTM algorithm to predict

Stox 31 Dec 16, 2022
Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Sean Zahller 1 Feb 04, 2022
Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Thoughtworks 318 Jan 02, 2023
Machine Learning University: Accelerated Natural Language Processing Class

Machine Learning University: Accelerated Natural Language Processing Class This repository contains slides, notebooks and datasets for the Machine Lea

AWS Samples 2k Jan 01, 2023
Open source time series library for Python

PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array

Ross Taylor 2k Jan 02, 2023
XGBoost + Optuna

AutoXGB XGBoost + Optuna: no brainer auto train xgboost directly from CSV files auto tune xgboost using optuna auto serve best xgboot model using fast

abhishek thakur 517 Dec 31, 2022
Extended Isolation Forest for Anomaly Detection

Table of contents Extended Isolation Forest Summary Motivation Isolation Forest Extension The Code Installation Requirements Use Citation Releases Ext

Sahand Hariri 377 Dec 18, 2022
Summer: compartmental disease modelling in Python

Summer: compartmental disease modelling in Python Summer is a Python-based framework for the creation and execution of compartmental (or "state-based"

6 May 13, 2022
CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

ZhihuiYangCS 8 Jun 07, 2022