Simple, light-weight config handling through python data classes with to/from JSON serialization/deserialization.

Overview

👩‍✈️ Coqpit

Simple, light-weight config handling through python data classes with to/from JSON serialization/deserialization.

Work in progress... 🌡️

Why I need this

What I need from a ML configuration library...

  1. Fixing a general config schema in Python to guide users about expected values.

    Python is good but not universal. Sometimes you train a ML model and use it on a different platform. So, you need your model configuration file importable by other programming languages.

  2. Simple dynamic value and type checking with default values.

    If you are a beginner in a ML project, it is hard to guess the right values for your ML experiment. Therefore it is important to have some default values and know what range and type of input are expected for each field.

  3. Ability to decompose large configs.

    As you define more fields for the training dataset, data preprocessing, model parameters, etc., your config file tends to get quite large but in most cases, they can be decomposed, enabling flexibility and readability.

  4. Inheritance and nested configurations.

    Simply helps to keep configurations consistent and easier to maintain.

  5. Ability to override values from the command line when necessary.

    For instance, you might need to define a path for your dataset, and this changes for almost every run. Then the user should be able to override this value easily over the command line.

    It also allows easy hyper-parameter search without changing your original code. Basically, you can run different models with different parameters just using command line arguments.

  6. Defining dynamic or conditional config values.

    Sometimes you need to define certain values depending on the other values. Using python helps to define the underlying logic for such config values.

  7. No dependencies

    You don't want to install a ton of libraries for just configuration management. If you install one, then it is better to be just native python.

🔍 Examples

👉 Serialization

import os
from dataclasses import asdict, dataclass, field
from coqpit import Coqpit, check_argument
from typing import List, Union


@dataclass
class SimpleConfig(Coqpit):
    val_a: int = 10
    val_b: int = None
    val_c: str = "Coqpit is great!"

    def check_values(self,):
        '''Check config fields'''
        c = asdict(self)
        check_argument('val_a', c, restricted=True, min_val=10, max_val=2056)
        check_argument('val_b', c, restricted=True, min_val=128, max_val=4058, allow_none=True)
        check_argument('val_c', c, restricted=True)


@dataclass
class NestedConfig(Coqpit):
    val_d: int = 10
    val_e: int = None
    val_f: str = "Coqpit is great!"
    sc_list: List[SimpleConfig] = None
    sc: SimpleConfig = SimpleConfig()
    union_var: Union[List[SimpleConfig], SimpleConfig] = field(default_factory=lambda: [SimpleConfig(),SimpleConfig()])

    def check_values(self,):
        '''Check config fields'''
        c = asdict(self)
        check_argument('val_d', c, restricted=True, min_val=10, max_val=2056)
        check_argument('val_e', c, restricted=True, min_val=128, max_val=4058, allow_none=True)
        check_argument('val_f', c, restricted=True)
        check_argument('sc_list', c, restricted=True, allow_none=True)
        check_argument('sc', c, restricted=True, allow_none=True)


if __name__ == '__main__':
    file_path = os.path.dirname(os.path.abspath(__file__))
    # init 🐸 dataclass
    config = NestedConfig()

    # save to a json file
    config.save_json(os.path.join(file_path, 'example_config.json'))
    # load a json file
    config2 = NestedConfig(val_d=None, val_e=500, val_f=None, sc_list=None, sc=None, union_var=None)
    # update the config with the json file.
    config2.load_json(os.path.join(file_path, 'example_config.json'))
    # now they should be having the same values.
    assert config == config2

    # pretty print the dataclass
    print(config.pprint())

    # export values to a dict
    config_dict = config.to_dict()
    # crate a new config with different values than the defaults
    config2 = NestedConfig(val_d=None, val_e=500, val_f=None, sc_list=None, sc=None, union_var=None)
    # update the config with the exported valuess from the previous config.
    config2.from_dict(config_dict)
    # now they should be having the same values.
    assert config == config2

👉 argparse handling and parsing.

import argparse
import os
from dataclasses import asdict, dataclass, field
from typing import List

from coqpit.coqpit import Coqpit, check_argument
import sys


@dataclass
class SimplerConfig(Coqpit):
    val_a: int = field(default=None, metadata={'help': 'this is val_a'})


@dataclass
class SimpleConfig(Coqpit):
    val_a: int = field(default=10,
                       metadata={'help': 'this is val_a of SimpleConfig'})
    val_b: int = field(default=None, metadata={'help': 'this is val_b'})
    val_c: str = "Coqpit is great!"
    mylist_with_default: List[SimplerConfig] = field(
        default_factory=lambda:
        [SimplerConfig(val_a=100),
         SimplerConfig(val_a=999)],
        metadata={'help': 'list of SimplerConfig'})

    # mylist_without_default: List[SimplerConfig] = field(default=None, metadata={'help': 'list of SimplerConfig'})  # NOT SUPPORTED YET!

    def check_values(self, ):
        '''Check config fields'''
        c = asdict(self)
        check_argument('val_a', c, restricted=True, min_val=10, max_val=2056)
        check_argument('val_b',
                       c,
                       restricted=True,
                       min_val=128,
                       max_val=4058,
                       allow_none=True)
        check_argument('val_c', c, restricted=True)


def main():
    file_path = os.path.dirname(os.path.abspath(__file__))

    # initial config
    config = SimpleConfig()
    print(config.pprint())

    # reference config that we like to match with the config above
    config_ref = SimpleConfig(val_a=222,
                              val_b=999,
                              val_c='this is different',
                              mylist_with_default=[
                                  SimplerConfig(val_a=222),
                                  SimplerConfig(val_a=111)
                              ])

    # create and init argparser with Coqpit
    parser = argparse.ArgumentParser()
    parser = config.init_argparse(parser)
    parser.print_help()
    args = parser.parse_args()

    # parse the argsparser
    config.from_argparse(args)
    config.pprint()
    # check the current config with the reference config
    assert config == config_ref


if __name__ == '__main__':
    sys.argv.extend(['--coqpit.val_a', '222'])
    sys.argv.extend(['--coqpit.val_b', '999'])
    sys.argv.extend(['--coqpit.val_c', 'this is different'])
    sys.argv.extend(['--coqpit.mylist_with_default.0.val_a', '222'])
    sys.argv.extend(['--coqpit.mylist_with_default.1.val_a', '111'])
    main()

🤸‍♀️ Merging coqpits

import os
from dataclasses import dataclass
from coqpit.coqpit import Coqpit, check_argument


@dataclass
class CoqpitA(Coqpit):
    val_a: int = 10
    val_b: int = None
    val_d: float = 10.21
    val_c: str = "Coqpit is great!"


@dataclass
class CoqpitB(Coqpit):
    val_d: int = 25
    val_e: int = 257
    val_f: float = -10.21
    val_g: str = "Coqpit is really great!"


if __name__ == '__main__':
    file_path = os.path.dirname(os.path.abspath(__file__))
    coqpita = CoqpitA()
    coqpitb = CoqpitB()
    coqpitb.merge(coqpita)
    print(coqpitb.val_a)
    print(coqpitb.pprint())
Comments
  • Allow file-like objects when saving and loading

    Allow file-like objects when saving and loading

    Allow users to save the configs to arbitrary locations through file-like objects. Would e.g. simplify coqui-ai/TTS#683 without adding an fsspec dependency to this library.

    opened by agrinh 6
  • Latest PR causes an issue when a `Serializable` has default None

    Latest PR causes an issue when a `Serializable` has default None

    https://github.com/coqui-ai/coqpit/blob/5379c810900d61ae19d79b73b03890fa103487dd/coqpit/coqpit.py#L539

    @reuben I am on it but if you have an easy fix go for it. Right now it breaks all the TTS trainings.

    opened by erogol 2
  • [feature request] change the `arg_perfix` of coqpit

    [feature request] change the `arg_perfix` of coqpit

    Is it possible to change the arg_perfix when using Coqpit object to another value / empty string? I see the option is supported in the code by changing arg_perfix, but not sure how to access it using the proposed API.

    Thanks for the package, looks very useful!

    opened by mosheman5 1
  • Setup CI to push new tags to PyPI automatically

    Setup CI to push new tags to PyPI automatically

    I'm gonna add a workflow to automatically upload new tags to PyPI. @erogol when you have a chance could you transfer the coqpit project on PyPI to the coqui user?[0] Then you can add your personal account as a maintainer also, so you don't have to change your local setup.

    In the mean time I'll iterate on testpypi.

    [0] https://pypi.org/user/coqui/

    opened by reuben 1
  • Fix rsetattr

    Fix rsetattr

    rsetattr() is updated to pass the new test cases below.

    I don't know if it is the right solution. It might be that rsetattr confuses when coqpit is used as a prefix.

    opened by erogol 0
  • [feature request] Warning when unexpected key is loaded but not present in class

    [feature request] Warning when unexpected key is loaded but not present in class

    Here is an toy scenario where it would be nice to have a warning

    from dataclasses import dataclass
    from coqpit import Coqpit
    
    @dataclass
    class SimpleConfig(Coqpit):
        val_a: int = 10
        val_b: int = None
    
    if __name__ == "__main__":
        config = SimpleConfig()
    
        tmp_config = config.to_dict()
        tmp_config["unknown_key"] = "Ignored value"
        config.from_dict(tmp_config)
        print(config.to_json())
    

    There the value of config.to_json() is

    {
        "val_a": 10,
        "val_b": null
    }
    

    Which is expected behaviour, but we should get a warning that some keys were ignored (IMO)

    feature request 
    opened by WeberJulian 6
  • [feature request] Add `is_defined`

    [feature request] Add `is_defined`

    Use coqpit.is_defined('field') to check if "field" in coqpit and coqpit.field is not None:

    It is a common condition when you parse out a coqpit object.

    feature request 
    opened by erogol 0
  • Allow grouping of argparse fields according to subclassing

    Allow grouping of argparse fields according to subclassing

    When using inheritance to extend config definitions the resulting ArgumentParser has all fields flattened out. It would be nice to group fields by class and allow some control over ordering.

    opened by reuben 2
Releases(v0.0.17)
Owner
Eren Gölge
AI researcher @Coqui.ai
Eren Gölge
Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them

Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them.

Anirudh Edpuganti 3 Apr 03, 2022
MICOM is a Python package for metabolic modeling of microbial communities

Welcome MICOM is a Python package for metabolic modeling of microbial communities currently developed in the Gibbons Lab at the Institute for Systems

57 Dec 21, 2022
Probabilistic programming framework that facilitates objective model selection for time-varying parameter models.

Time series analysis today is an important cornerstone of quantitative science in many disciplines, including natural and life sciences as well as eco

Christoph Mark 129 Dec 24, 2022
Client - 🔥 A tool for visualizing and tracking your machine learning experiments

Weights and Biases Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to produ

Weights & Biases 5.2k Jan 03, 2023
CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

ZhihuiYangCS 8 Jun 07, 2022
Cryptocurrency price prediction and exceptions in python

Cryptocurrency price prediction and exceptions in python This is a coursework on foundations of computing module Through this coursework i worked on m

Panagiotis Sotirellos 1 Nov 07, 2021
Dragonfly is an open source python library for scalable Bayesian optimisation.

Dragonfly is an open source python library for scalable Bayesian optimisation. Bayesian optimisation is used for optimising black-box functions whose

744 Jan 02, 2023
Optimal Randomized Canonical Correlation Analysis

ORCCA Optimal Randomized Canonical Correlation Analysis This project is for the python version of ORCCA algorithm. It depends on Numpy for matrix calc

Yinsong Wang 1 Nov 21, 2021
Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

GENDIS GENetic DIscovery of Shapelets In the time series classification domain, shapelets are small subseries that are discriminative for a certain cl

IDLab Services 90 Oct 28, 2022
Educational python for Neural Networks, written in pure Python/NumPy.

Educational python for Neural Networks, written in pure Python/NumPy.

127 Oct 27, 2022
Management of exclusive GPU access for distributed machine learning workloads

TensorHive is an open source tool for managing computing resources used by multiple users across distributed hosts. It focuses on granting

Paweł Rościszewski 131 Dec 12, 2022
A Time Series Library for Apache Spark

Flint: A Time Series Library for Apache Spark The ability to analyze time series data at scale is critical for the success of finance and IoT applicat

Two Sigma 970 Jan 04, 2023
An implementation of Relaxed Linear Adversarial Concept Erasure (RLACE)

Background This repository contains an implementation of Relaxed Linear Adversarial Concept Erasure (RLACE). Given a dataset X of dense representation

Shauli Ravfogel 4 Apr 13, 2022
Automated Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning

The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. I

MLJAR 2.4k Jan 02, 2023
Hypernets: A General Automated Machine Learning framework to simplify the development of End-to-end AutoML toolkits in specific domains.

A General Automated Machine Learning framework to simplify the development of End-to-end AutoML toolkits in specific domains.

DataCanvas 216 Dec 23, 2022
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Brett Vogelsang 2 Jan 18, 2022
Pragmatic AI Labs 421 Dec 31, 2022
Deep Survival Machines - Fully Parametric Survival Regression

Package: dsm Python package dsm provides an API to train the Deep Survival Machines and associated models for problems in survival analysis. The under

Carnegie Mellon University Auton Lab 10 Dec 30, 2022
Getting Profit and Loss Make Easy From Binance

Getting Profit and Loss Make Easy From Binance I have been in Binance Automated Trading for some time and have generated a lot of transaction records,

17 Dec 21, 2022
The project's goal is to show a real world application of image segmentation using k means algorithm

The project's goal is to show a real world application of image segmentation using k means algorithm

2 Jan 22, 2022