Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python

Overview

Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python

Overview

Bank Jago has attracted investors' attention since the end of December 2020, where previously the company was named PT Bank Atos Indonesia Tbk, then on 27 May 2021 based on the Decree of the Deputy Commissioner for Banking Supervision I OJK Number KEP-95/PB.1/2020 dated 27 may 2020 regarding the application of the use of a business license on behalf of PT Bank Artos Indonesia, Tbk to become PT Bank Jago, Tbk. this attracted the attention of investors because Bank Jago plans to transform digital banks, through this strategic planning since 2020, Bank Jago has become a concern for investors, where at the end of 2020 Bank Jago's share price was recorded at Rp 3,566. interestingly, Gojek through its subsidiary PT Dompet Karya Anak Bangsa acquired 1.95 billion shares of Bank Jago worth Rp 2.25 trillion on December 18, 2020. Until now, the stock price of Bank Jago with the stock code "Arto" to be exact 12 November 2021 is worth Rp 15,500, meaning that since December 2020 there has been an increase of 334%. To assess in helping investment decisions, are Arto's shares still attractive for investors to buy or will the price continue to increase? For this reason, this program seeks to assist in predicting Arto's shares in making investment decisions, with the help of the Facebook Prophet and Machine Learning. As reading material, you can read it through Facebook Prophet for time series predictions.

By using historical data obtained from Yahoo Finance, we can analyze what Bank Jago's stock price predictions will look like in the future.

Results

Plotting Using Facebooks Prophet

Plot Arto

We can see, the results of the plot using Facebook Prophet show good model results, indicated by following the actual price line, we can also see that the plot results predict that Bank Jago shares will continue to increase, so this can be considered for investors as a signal buy, or for investors who already have it can continue to hold.

Prediction results using a Machine Learning-based Facebook Prophet model

Screenshot 2021-11-12 233458

If we see, the results of the model predictions are able to produce quite good insight.

Owner
Najibulloh Asror
`Welcome to my world`
Najibulloh Asror
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion is a Python library for time series intelligence. It provides an end-to-end machine learning framework that includes loading and transforming data, building and training models, post-processi

Salesforce 2.8k Jan 05, 2023
CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL)

CyLP CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL). CyLP’s unique feature is that you can use i

COIN-OR Foundation 161 Dec 14, 2022
Lightweight Machine Learning Experiment Logging 📖

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and co

Robert Lange 65 Dec 08, 2022
An implementation of Relaxed Linear Adversarial Concept Erasure (RLACE)

Background This repository contains an implementation of Relaxed Linear Adversarial Concept Erasure (RLACE). Given a dataset X of dense representation

Shauli Ravfogel 4 Apr 13, 2022
LibTraffic is a unified, flexible and comprehensive traffic prediction library based on PyTorch

LibTraffic is a unified, flexible and comprehensive traffic prediction library, which provides researchers with a credibly experimental tool and a convenient development framework. Our library is imp

432 Jan 05, 2023
Add built-in support for quaternions to numpy

Quaternions in numpy This Python module adds a quaternion dtype to NumPy. The code was originally based on code by Martin Ling (which he wrote with he

Mike Boyle 531 Dec 28, 2022
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Thines Kumar 1 Jan 31, 2022
Mixing up the Invariant Information clustering architecture, with self supervised concepts from SimCLR and MoCo approaches

Self Supervised clusterer Combined IIC, and Moco architectures, with some SimCLR notions, to get state of the art unsupervised clustering while retain

Bendidi Ihab 9 Feb 13, 2022
An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models

Seldon Core: Blazing Fast, Industry-Ready ML An open source platform to deploy your machine learning models on Kubernetes at massive scale. Overview S

Seldon 3.5k Jan 01, 2023
A Lightweight Hyperparameter Optimization Tool 🚀

The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machine Learning Experiment (MLE) pipeline.

Robert Lange 137 Dec 02, 2022
Forecasting prices using Facebook/Meta's Prophet model

CryptoForecasting using Machine and Deep learning (Part 1) CryptoForecasting using Machine Learning The main aspect of predicting the stock-related da

1 Nov 27, 2021
Repository for DCA0305, an undergraduate course about Machine Learning Workflows and Pipelines

Federal University of Rio Grande do Norte Technology Center Department of Computer Engineering and Automation Machine Learning Based Systems Design Re

Ivanovitch Silva 81 Oct 18, 2022
Client - 🔥 A tool for visualizing and tracking your machine learning experiments

Weights and Biases Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to produ

Weights & Biases 5.2k Jan 03, 2023
Random Forest Classification for Neural Subtypes

Random Forest classifier for neural subtypes extracted from extracellular recordings from human brain organoids.

Michael Zabolocki 1 Jan 31, 2022
ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

ArviZ 1.3k Jan 05, 2023
A Python package to preprocess time series

Disclaimer: This package is WIP. Do not take any APIs for granted. tspreprocess Time series can contain noise, may be sampled under a non fitting rate

Maximilian Christ 57 Dec 17, 2022
A single Python file with some tools for visualizing machine learning in the terminal.

Machine Learning Visualization Tools A single Python file with some tools for visualizing machine learning in the terminal. This demo is composed of t

Bram Wasti 35 Dec 29, 2022
Machine Learning for Time-Series with Python.Published by Packt

Machine-Learning-for-Time-Series-with-Python Become proficient in deriving insights from time-series data and analyzing a model’s performance Links Am

Packt 124 Dec 28, 2022