Factorization machines in python

Related tags

Machine LearningpyFM
Overview

Factorization Machines in Python

This is a python implementation of Factorization Machines [1]. This uses stochastic gradient descent with adaptive regularization as a learning method, which adapts the regularization automatically while training the model parameters. See [2] for details. From libfm.org: "Factorization machines (FM) are a generic approach that allows to mimic most factorization models by feature engineering. This way, factorization machines combine the generality of feature engineering with the superiority of factorization models in estimating interactions between categorical variables of large domain."

[1] Steffen Rendle (2012): Factorization Machines with libFM, in ACM Trans. Intell. Syst. Technol., 3(3), May. [2] Steffen Rendle: Learning recommender systems with adaptive regularization. WSDM 2012: 133-142

Installation

pip install git+https://github.com/coreylynch/pyFM

Dependencies

  • numpy
  • sklearn

Training Representation

The easiest way to use this class is to represent your training data as lists of standard Python dict objects, where the dict elements map each instance's categorical and real valued variables to its values. Then use a sklearn DictVectorizer to convert them to a design matrix with a one-of-K or “one-hot” coding.

Here's a toy example

from pyfm import pylibfm
from sklearn.feature_extraction import DictVectorizer
import numpy as np
train = [
	{"user": "1", "item": "5", "age": 19},
	{"user": "2", "item": "43", "age": 33},
	{"user": "3", "item": "20", "age": 55},
	{"user": "4", "item": "10", "age": 20},
]
v = DictVectorizer()
X = v.fit_transform(train)
print(X.toarray())
[[ 19.   0.   0.   0.   1.   1.   0.   0.   0.]
 [ 33.   0.   0.   1.   0.   0.   1.   0.   0.]
 [ 55.   0.   1.   0.   0.   0.   0.   1.   0.]
 [ 20.   1.   0.   0.   0.   0.   0.   0.   1.]]
y = np.repeat(1.0,X.shape[0])
fm = pylibfm.FM()
fm.fit(X,y)
fm.predict(v.transform({"user": "1", "item": "10", "age": 24}))

Getting Started

Here's an example on some real movie ratings data.

First get the smallest movielens ratings dataset from http://www.grouplens.org/system/files/ml-100k.zip. ml-100k contains the files u.item (list of movie ids and titles) and u.data (list of user_id, movie_id, rating, timestamp).

import numpy as np
from sklearn.feature_extraction import DictVectorizer
from pyfm import pylibfm

# Read in data
def loadData(filename,path="ml-100k/"):
    data = []
    y = []
    users=set()
    items=set()
    with open(path+filename) as f:
        for line in f:
            (user,movieid,rating,ts)=line.split('\t')
            data.append({ "user_id": str(user), "movie_id": str(movieid)})
            y.append(float(rating))
            users.add(user)
            items.add(movieid)

    return (data, np.array(y), users, items)

(train_data, y_train, train_users, train_items) = loadData("ua.base")
(test_data, y_test, test_users, test_items) = loadData("ua.test")
v = DictVectorizer()
X_train = v.fit_transform(train_data)
X_test = v.transform(test_data)

# Build and train a Factorization Machine
fm = pylibfm.FM(num_factors=10, num_iter=100, verbose=True, task="regression", initial_learning_rate=0.001, learning_rate_schedule="optimal")

fm.fit(X_train,y_train)
Creating validation dataset of 0.01 of training for adaptive regularization
-- Epoch 1
Training MSE: 0.59477
-- Epoch 2
Training MSE: 0.51841
-- Epoch 3
Training MSE: 0.49125
-- Epoch 4
Training MSE: 0.47589
-- Epoch 5
Training MSE: 0.46571
-- Epoch 6
Training MSE: 0.45852
-- Epoch 7
Training MSE: 0.45322
-- Epoch 8
Training MSE: 0.44908
-- Epoch 9
Training MSE: 0.44557
-- Epoch 10
Training MSE: 0.44278
...
-- Epoch 98
Training MSE: 0.41863
-- Epoch 99
Training MSE: 0.41865
-- Epoch 100
Training MSE: 0.41874

# Evaluate
preds = fm.predict(X_test)
from sklearn.metrics import mean_squared_error
print("FM MSE: %.4f" % mean_squared_error(y_test,preds))
FM MSE: 0.9227

Classification example

import numpy as np
from sklearn.feature_extraction import DictVectorizer
from sklearn.cross_validation import train_test_split
from pyfm import pylibfm

from sklearn.datasets import make_classification

X, y = make_classification(n_samples=1000,n_features=100, n_clusters_per_class=1)
data = [ {v: k for k, v in dict(zip(i, range(len(i)))).items()}  for i in X]

X_train, X_test, y_train, y_test = train_test_split(data, y, test_size=0.1, random_state=42)

v = DictVectorizer()
X_train = v.fit_transform(X_train)
X_test = v.transform(X_test)

fm = pylibfm.FM(num_factors=50, num_iter=10, verbose=True, task="classification", initial_learning_rate=0.0001, learning_rate_schedule="optimal")

fm.fit(X_train,y_train)

Creating validation dataset of 0.01 of training for adaptive regularization
-- Epoch 1
Training log loss: 1.91885
-- Epoch 2
Training log loss: 1.62022
-- Epoch 3
Training log loss: 1.36736
-- Epoch 4
Training log loss: 1.15562
-- Epoch 5
Training log loss: 0.97961
-- Epoch 6
Training log loss: 0.83356
-- Epoch 7
Training log loss: 0.71208
-- Epoch 8
Training log loss: 0.61108
-- Epoch 9
Training log loss: 0.52705
-- Epoch 10
Training log loss: 0.45685

# Evaluate
from sklearn.metrics import log_loss
print "Validation log loss: %.4f" % log_loss(y_test,fm.predict(X_test))
Validation log loss: 1.5025
Owner
Corey Lynch
Research Engineer, Robotics @ Google Brain
Corey Lynch
Python library for multilinear algebra and tensor factorizations

scikit-tensor is a Python module for multilinear algebra and tensor factorizations

Maximilian Nickel 394 Dec 09, 2022
BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models.

Model Serving Made Easy BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models. Supports multi

BentoML 4.4k Jan 04, 2023
机器学习检测webshell

ai-webshell-detect 机器学习检测webshell,利用textcnn+简单二分类网络,基于keras,花了七天 检测原理: 从文件熵 文件长度 文件语句提取出特征,然后文件熵与长度送入二分类网络,文件语句送入textcnn 项目原理,介绍,怎么做出来的

Huoji's 56 Dec 14, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
Python package for causal inference using Bayesian structural time-series models.

Python Causal Impact Causal inference using Bayesian structural time-series models. This package aims at defining a python equivalent of the R CausalI

Thomas Cassou 219 Dec 11, 2022
Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any student(s) having the second lowest grade.

Hackerank-Nested-List Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any s

Sangeeth Mathew John 2 Dec 14, 2021
Generate music from midi files using BPE and markov model

Generate music from midi files using BPE and markov model

Aditya Khadilkar 37 Oct 24, 2022
Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices

Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and t

164 Jan 04, 2023
Timeseries analysis for neuroscience data

=================================================== Nitime: timeseries analysis for neuroscience data ===============================================

NIPY developers 212 Dec 09, 2022
UpliftML: A Python Package for Scalable Uplift Modeling

UpliftML is a Python package for scalable unconstrained and constrained uplift modeling from experimental data. To accommodate working with big data, the package uses PySpark and H2O models as base l

Booking.com 254 Dec 31, 2022
Binary Classification Problem with Machine Learning

Binary Classification Problem with Machine Learning Solving Approach: 1) Ultimate Goal of the Assignment: This assignment is about solving a binary cl

Dinesh Mali 0 Jan 20, 2022
A Multipurpose Library for Synthetic Time Series Generation in Python

TimeSynth Multipurpose Library for Synthetic Time Series Please cite as: J. R. Maat, A. Malali, and P. Protopapas, “TimeSynth: A Multipurpose Library

278 Dec 26, 2022
Data from "Datamodels: Predicting Predictions with Training Data"

Data from "Datamodels: Predicting Predictions with Training Data" Here we provid

Madry Lab 51 Dec 09, 2022
Simple linear model implementations from scratch.

Hand Crafted Models Simple linear model implementations from scratch. Table of contents Overview Project Structure Getting started Citing this project

Jonathan Sadighian 2 Sep 13, 2021
Add built-in support for quaternions to numpy

Quaternions in numpy This Python module adds a quaternion dtype to NumPy. The code was originally based on code by Martin Ling (which he wrote with he

Mike Boyle 531 Dec 28, 2022
My capstone project for Udacity's Machine Learning Nanodegree

MLND-Capstone My capstone project for Udacity's Machine Learning Nanodegree Lane Detection with Deep Learning In this project, I use a deep learning-b

Michael Virgo 407 Dec 12, 2022
ML-powered Loan-Marketer Customer Filtering Engine

In Loan-Marketing business employees are required to call the user's to buy loans of several fields and in several magnitudes. If employees are calling everybody in the network it is also very length

Sagnik Roy 13 Jul 02, 2022
A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search (Manhattan Distance Heuristic)

A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and the A* Search (using the Manhattan Distance Heuristic)

17 Aug 14, 2022
neurodsp is a collection of approaches for applying digital signal processing to neural time series

neurodsp is a collection of approaches for applying digital signal processing to neural time series, including algorithms that have been proposed for the analysis of neural time series. It also inclu

NeuroDSP 224 Dec 02, 2022
As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Crate will be the hub of various ML projects which will be the resources for the ML enthusiasts! Open Source Program: SWOC 2021 and JWOC 2022.

Machine Learning Loot Crate 💻 🧰 🔴 Welcome contributors! As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Cra

Abhishek Sharma 89 Dec 28, 2022