My capstone project for Udacity's Machine Learning Nanodegree

Overview

MLND-Capstone

My capstone project for Udacity's Machine Learning Nanodegree

Lane Detection with Deep Learning

In this project, I use a deep learning-based approach to improve upon lane detection. My final model uses a fully convolutional neural network to output an image of a predicted lane.

Please see my final Capstone Project Report here.

Also, see my original capstone proposal here.

Lastly, check out the wiki page in this repository to see some more of my steps along the way. The separate "early_steps" branch contains earlier code for previous versions of the neural network as well as files that can extract data for training and perform some automatic labeling.

See an early version of the model detecting lane lines with perspective transformed images here. An early version of my model trained without perspective transformed images, i.e. regular road images, can be seen here!

Lastly, with the finalized fully convolutional model, there are a couple additional videos I made. The first, which is the same video from the above two, has between 10-20% of the frames fed into the mode, as can be seen here. Additionally, a video made from the Challenge Video from Udacity's Advanced Lane Lines project in the SDCND, where the neural network had never seen the video before, can be seen here. The model performs fairly robustly on the never-before-seen video, with the only hitch due to the large light difference as it goes under the overpass.

An additional video can be seen at this Dropbox link.

Dataset

For fully convolutional network

You can download the full training set of images I used here and the full set of 'labels' (which are just the 'G' channel from an RGB image of a re-drawn lane with an extra dimension added to make use in Keras easier) here (157 MB).

Images with coefficient labels

If you just want the original training images with no flips or rotations (downsized to 80x160x3) you can find them here. You can also find the related coefficient labels (i.e. not the drawn lane labels, but the cofficients for a polynomial line) here.

Software Requirements

You can use this conda environment file. In the command line, use conda env create -f lane_environment.yml and then source activate lane_environment (or just activate with the environment name on Windows) to use the environment.

Key Files

Although I have included many of the python files I created to help process my images and various prototype neural networks in the "early_steps" branch, the key files are:

  • fully_conv_NN.py - Assuming you have downloaded the training images and labels above, this is the fully convolutional neural network to train using that data.
  • full_CNN_model.h5 - These are the final outputs from the above CNN. Note that if you train the file above the originals here will be overwritten! These get fed into the below.
  • draw_detected_lanes.py - Using the trained model and an input video, this predicts the lane, averages across 5 frames, and returns the original video with predicted lane lines drawn onto it. Note that it is currently set up to use the basic video from Udacity's SDCND Advanced Lane Lines project here, but the code at the end can be changed to accept different input videos.

Training Image Statistics

  • 21,054 total images gathered from 12 videos (a mix of different times of day, weather, traffic, and road curvatures)
  • 17.4% were clear night driving, 16.4% were rainy morning driving, and 66.2% were cloudy afternoon driving
  • 26.5% were straight or mostly straight roads, 30.2% were a mix or moderate curves, and 43.3% were very curvy roads
  • The roads also contain difficult areas such as construction and intersections
  • 14,235 of the total that were usable of those gathered (mainly due to blurriness, hidden lines, etc.)
  • 1,420 total images originally extracted from those to account for time series (1 in every 10)
  • 227 of the 1,420 unusable due to the limits of the CV-based model used to label (down from 446 due to various improvements made to the original model) for a total of 1,193 images
  • Another 568 images (of 1,636 pulled in) gathered from more curvy lines to assist in gaining a wider distribution of labels (1 in every 5 from the more curved-lane videos; from 8,187 frames)
  • In total, 1,761 original images
  • I pulled in the easier project video from Udacity's Advanced Lane Lines project (to help the model learn an additional camera's distortion) - of 1,252 frames, I used 1 in 5 for 250 total, 217 of which were usable for training
  • A total of 1,978 actual images used between my collections and the one Udacity video
  • After checking histograms for each coefficient of each label for distribution, I created an additional 4,404 images using small rotations of the images outside the very center of the original distribution of images. This was done in three rounds of slowly moving outward from the center of the data (so those further out from the center of the distribution were done multiple times). 6,382 images existed at this point.
  • Finally, I added horizontal flips of each and every road image and its corresponding label, which doubled the total images. All in all, there were a total of 12,764 images for training.
Owner
Michael Virgo
Software Engineer
Michael Virgo
A data preprocessing package for time series data. Design for machine learning and deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

Allen Chiang 152 Jan 07, 2023
Predict the demand for electricity (R) - FRENCH

06.demand-electricity Predict the demand for electricity (R) - FRENCH Prédisez la demande en électricité Prérequis Pour effectuer ce projet, vous devr

1 Feb 13, 2022
Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

GENDIS GENetic DIscovery of Shapelets In the time series classification domain, shapelets are small subseries that are discriminative for a certain cl

IDLab Services 90 Oct 28, 2022
Test symmetries with sklearn decision tree models

Test symmetries with sklearn decision tree models Setup Begin from an environment with a recent version of python 3. source setup.sh Leave the enviro

Rupert Tombs 2 Jul 19, 2022
Turning images into '9-pan' palettes using KMeans clustering from sklearn.

img2palette Turning images into '9-pan' palettes using KMeans clustering from sklearn. Requirements We require: Pillow, for opening and processing ima

Samuel Vidovich 2 Jan 01, 2022
Anomaly Detection and Correlation library

luminol Overview Luminol is a light weight python library for time series data analysis. The two major functionalities it supports are anomaly detecti

LinkedIn 1.1k Jan 01, 2023
Open MLOps - A Production-focused Open-Source Machine Learning Framework

Open MLOps - A Production-focused Open-Source Machine Learning Framework Open MLOps is a set of open-source tools carefully chosen to ease user experi

Data Revenue 590 Dec 28, 2022
Turns your machine learning code into microservices with web API, interactive GUI, and more.

Turns your machine learning code into microservices with web API, interactive GUI, and more.

Machine Learning Tooling 2.8k Jan 02, 2023
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your

BDFD 6 Nov 05, 2022
Dieses Projekt ermöglicht es den Smartmeter der EVN (Netz Niederösterreich) über die Kundenschnittstelle auszulesen.

SmartMeterEVN Dieses Projekt ermöglicht es den Smartmeter der EVN (Netz Niederösterreich) über die Kundenschnittstelle auszulesen. Smart Meter werden

greenMike 43 Dec 04, 2022
Python module for machine learning time series:

seglearn Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extr

David Burns 536 Dec 29, 2022
Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and Python functions.

Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and many other libraries. Documenta

2.5k Jan 07, 2023
Uses WiFi signals :signal_strength: and machine learning to predict where you are

Uses WiFi signals and machine learning (sklearn's RandomForest) to predict where you are. Even works for small distances like 2-10 meters.

Pascal van Kooten 5k Jan 09, 2023
Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas.

Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas. Its objective is to ex

Taylor G Smith 54 Aug 20, 2022
Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any student(s) having the second lowest grade.

Hackerank-Nested-List Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any s

Sangeeth Mathew John 2 Dec 14, 2021
Dual Adaptive Sampling for Machine Learning Interatomic potential.

DAS Dual Adaptive Sampling for Machine Learning Interatomic potential. How to cite If you use this code in your research, please cite this using: Hong

6 Jul 06, 2022
pywFM is a Python wrapper for Steffen Rendle's factorization machines library libFM

pywFM pywFM is a Python wrapper for Steffen Rendle's libFM. libFM is a Factorization Machine library: Factorization machines (FM) are a generic approa

João Ferreira Loff 251 Sep 23, 2022
Implementations of Machine Learning models, Regularizers, Optimizers and different Cost functions.

Linear Models Implementations of LinearRegression, LassoRegression and RidgeRegression with appropriate Regularizers and Optimizers. Linear Regression

Keivan Ipchi Hagh 1 Nov 22, 2021
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 08, 2023
Repository for DCA0305, an undergraduate course about Machine Learning Workflows and Pipelines

Federal University of Rio Grande do Norte Technology Center Department of Computer Engineering and Automation Machine Learning Based Systems Design Re

Ivanovitch Silva 81 Oct 18, 2022