Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas.

Overview

codecov Supported versions Supported versions Supported versions CircleCI Build Status

skoot

Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas. Its objective is to expedite data munging and pre-processing tasks that can tend to take up so much of data science practitioners' time. See the documentation for more info.

Note that skoot is the preferred alternative to the now deprecated skutil library

Two minutes to model-readiness

Real world data is nasty. Most data scientists spend the majority of their time tackling data cleansing tasks. With skoot, we can automate away so much of the bespoke hacking solutions that consume data scientists' time.

In this example, we'll examine a common dataset (the adult dataset from the UCI machine learning repo) that requires significant pre-processing.

from skoot.datasets import load_adult_df
from skoot.feature_selection import FeatureFilter
from skoot.decomposition import SelectivePCA
from skoot.preprocessing import DummyEncoder
from skoot.utils.dataframe import get_numeric_columns
from skoot.utils.dataframe import get_categorical_columns
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

# load the dataset with the skoot-native loader & split it
adult = load_adult_df(tgt_name="target")
y = adult.pop("target")
X_train, X_test, y_train, y_test = train_test_split(
    adult, y, random_state=42, test_size=0.2)
    
# get numeric and categorical feature names
num_cols = get_numeric_columns(X_train).columns
obj_cols = get_categorical_columns(X_train).columns

# remove the education-num from the num_cols since we're going to remove it
num_cols = num_cols[~(num_cols == "education-num")]
    
# build a pipeline
pipe = Pipeline([
    # drop out the ordinal level that's otherwise equal to "education"
    ("dropper", FeatureFilter(cols=["education-num"])),
    
    # decompose the numeric features with PCA
    ("pca", SelectivePCA(cols=num_cols)),
    
    # dummy encode the categorical features
    ("dummy", DummyEncoder(cols=obj_cols, handle_unknown="ignore")),
    
    # and a simple classifier class
    ("clf", RandomForestClassifier(n_estimators=100, random_state=42))
])

pipe.fit(X_train, y_train)

# produce predictions
preds = pipe.predict(X_test)
print("Test accuracy: %.3f" % accuracy_score(y_test, preds))

For more tutorials, check out the documentation.

Comments
  • Windows: pip install not working

    Windows: pip install not working

    Hi, I can't install skoot neither via pip, nor anaconda.

    > pip install skoot
    Collecting skoot
      Could not find a version that satisfies the requirement skoot (from versions: )
    No matching distribution found for skoot
    

    Any ideas why that might be? Thank you!

    opened by r0f1 2
  • Bump django from 1.11 to 1.11.29 in /build_tools/doc

    Bump django from 1.11 to 1.11.29 in /build_tools/doc

    Bumps django from 1.11 to 1.11.29.

    Commits
    • f1e3017 [1.11.x] Bumped version for 1.11.29 release.
    • 02d97f3 [1.11.x] Fixed CVE-2020-9402 -- Properly escaped tolerance parameter in GIS f...
    • e643833 [1.11.x] Pinned PyYAML < 5.3 in test requirements.
    • d0e3eb8 [1.11.x] Added CVE-2020-7471 to security archive.
    • 9a62ed5 [1.11.x] Post-release version bump.
    • e09f09b [1.11.x] Bumped version for 1.11.28 release.
    • 001b063 [1.11.x] Fixed CVE-2020-7471 -- Properly escaped StringAgg(delimiter) parameter.
    • 7fd1ca3 [1.11.x] Fixed timezones tests for PyYAML 5.3+.
    • 121115d [1.11.x] Added CVE-2019-19844 to the security archive.
    • 2c4fb9a [1.11.x] Post-release version bump.
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump django from 1.11 to 1.11.28 in /build_tools/doc

    Bump django from 1.11 to 1.11.28 in /build_tools/doc

    Bumps django from 1.11 to 1.11.28.

    Commits
    • e09f09b [1.11.x] Bumped version for 1.11.28 release.
    • 001b063 [1.11.x] Fixed CVE-2020-7471 -- Properly escaped StringAgg(delimiter) parameter.
    • 7fd1ca3 [1.11.x] Fixed timezones tests for PyYAML 5.3+.
    • 121115d [1.11.x] Added CVE-2019-19844 to the security archive.
    • 2c4fb9a [1.11.x] Post-release version bump.
    • 358973a [1.11.x] Bumped version for 1.11.27 release.
    • f4cff43 [1.11.x] Fixed CVE-2019-19844 -- Used verified user email for password reset ...
    • a235574 [1.11.x] Refs #31073 -- Added release notes for 02eff7ef60466da108b1a33f1e4dc...
    • e8fdf00 [1.11.x] Fixed #31073 -- Prevented CheckboxInput.get_context() from mutating ...
    • 4f15016 [1.11.x] Post-release version bump.
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump django from 1.11 to 1.11.23 in /build_tools/doc

    Bump django from 1.11 to 1.11.23 in /build_tools/doc

    Bumps django from 1.11 to 1.11.23.

    Commits
    • 9748977 [1.11.x] Bumped version for 1.11.23 release.
    • 869b34e [1.11.x] Fixed CVE-2019-14235 -- Fixed potential memory exhaustion in django....
    • ed682a2 [1.11.x] Fixed CVE-2019-14234 -- Protected JSONField/HStoreField key and inde...
    • 52479ac [1.11.x] Fixed CVE-2019-14233 -- Prevented excessive HTMLParser recursion in ...
    • 42a66e9 [1.11.X] Fixed CVE-2019-14232 -- Adjusted regex to avoid backtracking issues ...
    • 693046e [1.11.x] Added stub release notes for security releases.
    • 6d054b5 [1.11.x] Added CVE-2019-12781 to the security release archive.
    • 7c849b9 [1.11.x] Post-release version bump.
    • 480380c [1.11.x] Bumped version for 1.11.22 release.
    • 32124fc [1.11.x] Fixed CVE-2019-12781 -- Made HttpRequest always trust SECURE_PROXY_S...
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot ignore this [patch|minor|major] version will close this PR and stop Dependabot creating any more for this minor/major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Wrapped classes still reference sklearn user-guide

    Wrapped classes still reference sklearn user-guide

    The "See Also" section of wrapped sklearn estimators still references sklearn user_guide refs. We need to monkey patch "Selective" (or whatever prefix we are using) in front of them so they link in our documentation.

    bug 
    opened by tgsmith61591 1
  • Bump django from 1.11 to 2.2.24 in /build_tools/doc

    Bump django from 1.11 to 2.2.24 in /build_tools/doc

    Bumps django from 1.11 to 2.2.24.

    Commits
    • 2da029d [2.2.x] Bumped version for 2.2.24 release.
    • f27c38a [2.2.x] Fixed CVE-2021-33571 -- Prevented leading zeros in IPv4 addresses.
    • 053cc95 [2.2.x] Fixed CVE-2021-33203 -- Fixed potential path-traversal via admindocs'...
    • 6229d87 [2.2.x] Confirmed release date for Django 2.2.24.
    • f163ad5 [2.2.x] Added stub release notes and date for Django 2.2.24.
    • bed1755 [2.2.x] Changed IRC references to Libera.Chat.
    • 63f0d7a [2.2.x] Refs #32718 -- Fixed file_storage.test_generate_filename and model_fi...
    • 5fe4970 [2.2.x] Post-release version bump.
    • 61f814f [2.2.x] Bumped version for 2.2.23 release.
    • b8ecb06 [2.2.x] Fixed #32718 -- Relaxed file name validation in FileField.
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • scipy._lib_version not found when building package

    scipy._lib_version not found when building package

    problem: error saying scipy._lib_version is missing when building skoot

    cause: scipy._lib_version was removed in scipy 1.5.0 --> https://github.com/scipy/scipy/pull/11290 (downgrading to scipy 1.4.0 helps)

    Thanks!

    opened by AgroSimi 0
  • pip install Skoot on Mac keeps failing with ERROR: Could not find a version that satisfies the requirement skoot (from versions: none).

    pip install Skoot on Mac keeps failing with ERROR: Could not find a version that satisfies the requirement skoot (from versions: none).

    Description

    pip install Skoot on Mac keeps failing with ERROR: Could not find a version that satisfies the requirement skoot (from versions: none) ERROR: No matching distribution found for skoot

    Steps/Code to Reproduce

    pip install skoot using python version : Python 2.7.17 using pip version : pip 19.3.1

    Expected Results

    No errors thrown, successful installation of Skoot

    Actual Results

    ERROR: Could not find a version that satisfies the requirement skoot (from versions: none) ERROR: No matching distribution found for skoot

    Versions

    platform - Darwin-19.2.0-x86_64-i386-64bit sys - ('Python', '2.7.17 (default, Oct 24 2019, 12:57:47) \n[GCC 4.2.1 Compatible Apple LLVM 11.0.0 (clang-1100.0.33.8)]') Skoot -( not able to install ) numpy -("NumPy", numpy.version) scipy - ('SciPy', '1.2.3') sklearn - scikit-learn->sklearn (1.16.6)

    opened by lakshmikrish-97 8
  • [MRG] Mac builds

    [MRG] Mac builds

    This PR adds builds for mac. Currently, it does not deploy to PyPI. We still need the deploy-vars group on ADO. Since we decided to just do mac + Linux for now, this branched off of add-azure... We can use that branch to play around with Windows, or create a new one

    opened by aaronreidsmith 1
  • Package Roadmap

    Package Roadmap

    Is skoot still an active project? Or is there a successor to this concept? Looking to build something similar for my specific workflow, but maybe it would be mutually beneficial to contribute to this project.

    opened by MattConflitti 2
  • String fields with typos

    String fields with typos

    Description

    TODO: Create a transformer that can map values in text fields to known "good" values given Levenstein distance or some other method.

    enhancement 
    opened by tgsmith61591 0
Releases(0.20.0)
Owner
Taylor G Smith
Data scientist, ML engineer and all-around hacker. Java was once my first love, but I've long since converted to the cult of Python.
Taylor G Smith
🔬 A curated list of awesome machine learning strategies & tools in financial market.

🔬 A curated list of awesome machine learning strategies & tools in financial market.

GeorgeZou 1.6k Dec 30, 2022
This is the code repository for Interpretable Machine Learning with Python, published by Packt.

Interpretable Machine Learning with Python, published by Packt

Packt 299 Jan 02, 2023
Learn how to responsibly deliver value with ML.

Made With ML Applied ML · MLOps · Production Join 30K+ developers in learning how to responsibly deliver value with ML. 🔥 Among the top MLOps reposit

Goku Mohandas 32k Dec 30, 2022
Uses WiFi signals :signal_strength: and machine learning to predict where you are

Uses WiFi signals and machine learning (sklearn's RandomForest) to predict where you are. Even works for small distances like 2-10 meters.

Pascal van Kooten 5k Jan 09, 2023
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 05, 2023
A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.

Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog

Ibrahim Koné 2 May 24, 2022
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
pure-predict: Machine learning prediction in pure Python

pure-predict speeds up and slims down machine learning prediction applications. It is a foundational tool for serverless inference or small batch prediction with popular machine learning frameworks l

Ibotta 84 Dec 29, 2022
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Brett Vogelsang 2 Jan 18, 2022
My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data

kNN-vs-RFR My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data In many areas, rental bikes have been launched to

1 Oct 28, 2021
A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model

A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model (Random Forest Classifier Model ) that helps the user to identify whether someone is showing positive Covid sym

Priyansh Sharma 2 Oct 06, 2022
Bottleneck a collection of fast, NaN-aware NumPy array functions written in C.

Bottleneck Bottleneck is a collection of fast, NaN-aware NumPy array functions written in C. As one example, to check if a np.array has any NaNs using

Python for Data 835 Dec 27, 2022
Decision tree is the most powerful and popular tool for classification and prediction

Diabetes Prediction Using Decision Tree Introduction Decision tree is the most powerful and popular tool for classification and prediction. A Decision

Arjun U 1 Jan 23, 2022
A machine learning model for Covid case prediction

CovidcasePrediction A machine learning model for Covid case prediction Problem Statement Using regression algorithms we can able to track the active c

VijayAadhithya2019rit 1 Feb 02, 2022
Anomaly Detection and Correlation library

luminol Overview Luminol is a light weight python library for time series data analysis. The two major functionalities it supports are anomaly detecti

LinkedIn 1.1k Jan 01, 2023
moDel Agnostic Language for Exploration and eXplanation

moDel Agnostic Language for Exploration and eXplanation Overview Unverified black box model is the path to the failure. Opaqueness leads to distrust.

Model Oriented 1.2k Jan 04, 2023
A repository of PyBullet utility functions for robotic motion planning, manipulation planning, and task and motion planning

pybullet-planning (previously ss-pybullet) A repository of PyBullet utility functions for robotic motion planning, manipulation planning, and task and

Caelan Garrett 260 Dec 27, 2022
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

Distributed scikit-learn meta-estimators in PySpark

sk-dist: Distributed scikit-learn meta-estimators in PySpark What is it? sk-dist is a Python package for machine learning built on top of scikit-learn

Ibotta 282 Dec 09, 2022
Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)"

CRAN Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)" This code doesn't exa

4 Nov 11, 2021