This repo includes some graph-based CTR prediction models and other representative baselines.

Overview

Graph-based CTR prediction

This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods:

  • Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction paper
  • GraphFM: Graph Factorization Machines for Feature Interaction Modeling paper

and some other representative baselines:

  • HoAFM: A High-order Attentive Factorization Machine for CTR Prediction paper
  • AutoInt: AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks paper
  • InterHAt: Interpretable Click-Through Rate Prediction through Hierarchical Attention paper

Requirements:

  • Tensorflow 1.5.0
  • Python 3.6
  • CUDA 9.0+ (For GPU)

Usage

Our code is based on AutoInt.

Input Format

The required input data is in the following format:

  • train_x: matrix with shape (num_sample, num_field). train_x[s][t] is the feature value of feature field t of sample s in the dataset. The default value for categorical feature is 1.
  • train_i: matrix with shape (num_sample, num_field). train_i[s][t] is the feature index of feature field t of sample s in the dataset. The maximal value of train_i is the feature size.
  • train_y: label of each sample in the dataset.

If you want to know how to preprocess the data, please refer to data/Dataprocess/Criteo/preprocess.py

Example

There are four public real-world datasets(Avazu, Criteo, KDD12, MovieLens-1M) that you can use. You can run the code on MovieLens-1M dataset directly in /movielens. The other three datasets are super huge, and they can not be fit into the memory as a whole. Therefore, we split the whole dataset into 10 parts and we use the first file as test set and the second file as valid set. We provide the codes for preprocessing these three datasets in data/Dataprocess. If you want to reuse these codes, you should first run preprocess.py to generate train_x.txt, train_i.txt, train_y.txt as described in Input Format. Then you should run data/Dataprocesss/Kfold_split/StratifiedKfold.py to split the whole dataset into ten folds. Finally you can run scale.py to scale the numerical value(optional).

To help test the correctness of the code and familarize yourself with the code, we upload the first 10000 samples of Criteo dataset in train_examples.txt. And we provide the scripts for preprocessing and training.(Please refer to data/sample_preprocess.sh and run_criteo.sh, you may need to modify the path in config.py and run_criteo.sh).

After you run the data/sample_preprocess.sh, you should get a folder named Criteo which contains part*, feature_size.npy, fold_index.npy, train_*.txt. feature_size.npy contains the number of total features which will be used to initialize the model. train_*.txt is the whole dataset.

Here's how to run the preprocessing.

cd data
mkdir Criteo
python ./Dataprocess/Criteo/preprocess.py
python ./Dataprocess/Kfold_split/stratifiedKfold.py
python ./Dataprocess/Criteo/scale.py

Here's how to train GraphFM on Criteo dataset.

CUDA_VISIBLE_DEVICES=$GPU python -m code.train \
--model_type GraphFM \
                        --data_path $YOUR_DATA_PATH --data Criteo \
                        --blocks 3 --heads 2 --block_shape "[64, 64, 64]" \
                        --ks "[39, 20, 5]" \
                        --is_save --has_residual \
                        --save_path ./models/GraphFM/Criteo/b3h2_64x64x64/ \
                        --field_size 39  --run_times 1 \
                        --epoch 2 --batch_size 1024 \

Here's how to train GraphFM on Avazu dataset.

CUDA_VISIBLE_DEVICES=$GPU python -m code.train \
--model_type GraphFM \
                        --data_path $YOUR_DATA_PATH --data Avazu \
                        --blocks 3 --heads 2 --block_shape "[64, 64, 64]" \
                        --ks "[23, 10, 2]" \
                        --is_save --has_residual \
                        --save_path ./models/GraphFM/Avazu/b3h2_64x64x64/ \
                        --field_size 23  --run_times 1 \
                        --epoch 2 --batch_size 1024 \

You can run the training on the relatively small MovieLens dataset in /movielens.

You should see the output like this:

...
train logs
...
start testing!...
restored from ./models/Criteo/b3h2_64x64x64/1/
test-result = 0.8088, test-logloss = 0.4430
test_auc [0.8088305055534442]
test_log_loss [0.44297631300399626]
avg_auc 0.8088305055534442
avg_log_loss 0.44297631300399626

Citation

If you find this repo useful for your research, please consider citing the following paper:

@inproceedings{li2019fi,
  title={Fi-gnn: Modeling feature interactions via graph neural networks for ctr prediction},
  author={Li, Zekun and Cui, Zeyu and Wu, Shu and Zhang, Xiaoyu and Wang, Liang},
  booktitle={Proceedings of the 28th ACM International Conference on Information and Knowledge Management},
  pages={539--548},
  year={2019}
}

@article{li2021graphfm,
  title={GraphFM: Graph Factorization Machines for Feature Interaction Modeling},
  author={Li, Zekun and Wu, Shu and Cui, Zeyu and Zhang, Xiaoyu},
  journal={arXiv preprint arXiv:2105.11866},
  year={2021}
}

Contact information

You can contact Zekun Li ([email protected]), if there are questions related to the code.

Acknowledgement

This implementation is based on Weiping Song and Chence Shi's AutoInt. Thanks for their sharing and contribution.

Owner
Big Data and Multi-modal Computing Group, CRIPAC
Big Data and Multi-modal Computing Group, Center for Research on Intelligent Perception and Computing
Big Data and Multi-modal Computing Group, CRIPAC
CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

SmartSim Example Zoo This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning appl

Cray Labs 14 Mar 30, 2022
Bottleneck a collection of fast, NaN-aware NumPy array functions written in C.

Bottleneck Bottleneck is a collection of fast, NaN-aware NumPy array functions written in C. As one example, to check if a np.array has any NaNs using

Python for Data 835 Dec 27, 2022
30 Days Of Machine Learning Using Pytorch

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

Mayur 119 Nov 24, 2022
LinearRegression2 Tvads and CarSales

LinearRegression2_Tvads_and_CarSales This project infers the insight that how the TV ads for cars and car Sales are being linked with each other. It i

Ashish Kumar Yadav 1 Dec 29, 2021
Data science, Data manipulation and Machine learning package.

duality Data science, Data manipulation and Machine learning package. Use permitted according to the terms of use and conditions set by the attached l

David Kundih 3 Oct 19, 2022
PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors.

PyNNDescent PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors. It provides a python implementation of Nearest Neighbo

Leland McInnes 699 Jan 09, 2023
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

Neuron AI 5 Jun 18, 2022
Bayesian Modeling and Computation in Python

Bayesian Modeling and Computation in Python Open access and Code This repository contains the open access version of the text and the code examples in

Bayesian Modeling and Computation in Python 339 Jan 02, 2023
BASTA: The BAyesian STellar Algorithm

BASTA: BAyesian STellar Algorithm Current stable version: v1.0 Important note: BASTA is developed for Python 3.8, but Python 3.7 should work as well.

BASTA team 16 Nov 15, 2022
cuML - RAPIDS Machine Learning Library

cuML - GPU Machine Learning Algorithms cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions t

RAPIDS 3.1k Dec 28, 2022
Cryptocurrency price prediction and exceptions in python

Cryptocurrency price prediction and exceptions in python This is a coursework on foundations of computing module Through this coursework i worked on m

Panagiotis Sotirellos 1 Nov 07, 2021
Both social media sentiment and stock market data are crucial for stock price prediction

Relating-Social-Media-to-Stock-Movement-Public - We explore the application of Machine Learning for predicting the return of the stock by using the information of stock returns. A trading strategy ba

Vishal Singh Parmar 15 Oct 29, 2022
Responsible Machine Learning with Python

Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.

ph_ 624 Jan 06, 2023
LibTraffic is a unified, flexible and comprehensive traffic prediction library based on PyTorch

LibTraffic is a unified, flexible and comprehensive traffic prediction library, which provides researchers with a credibly experimental tool and a convenient development framework. Our library is imp

432 Jan 05, 2023
PySurvival is an open source python package for Survival Analysis modeling

PySurvival What is Pysurvival ? PySurvival is an open source python package for Survival Analysis modeling - the modeling concept used to analyze or p

Square 265 Dec 27, 2022
BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models.

Model Serving Made Easy BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models. Supports multi

BentoML 4.4k Jan 04, 2023
Microsoft Machine Learning for Apache Spark

Microsoft Machine Learning for Apache Spark MMLSpark is an ecosystem of tools aimed towards expanding the distributed computing framework Apache Spark

Microsoft Azure 3.9k Dec 30, 2022
A Lightweight Hyperparameter Optimization Tool 🚀

The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machine Learning Experiment (MLE) pipeline.

Robert Lange 137 Dec 02, 2022
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
A flexible CTF contest platform for coming PKU GeekGame events

Project Guiding Star: the Backend A flexible CTF contest platform for coming PKU GeekGame events Still in early development Highlights Not configurabl

PKU GeekGame 14 Dec 15, 2022