Python Automated Machine Learning library for tabular data.

Overview

Read the Docs Lines of code GitHub issues GitHub Repo stars GitHub contributors


Logo

Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Science tasks.
πŸ“š Explore the docs Β»

🐞 Report Bug Β· πŸ†• Request Feature

Table of Contents

  1. About The Project
  2. Getting Started
  3. Usage
  4. Roadmap
  5. Contributing
  6. License
  7. Contact

About the project

Disclaimer

This library is an open-source research project and is not part of any official SAP products.

What's this?

This is a simple but accurate Automated Machine Learning library. Based on SAP HANA powerful in-memory algorithms, it provides high accuracy in multiple machine learning tasks. Our library also uses numerous data preprocessing functions to automate routine data cleaning tasks. So, hana_automl goes through all AutoML steps and makes Data Science work easier.

What is SAP HANA?

From www.sap.com: SAP HANA is a high-performance in-memory database that speeds data-driven, real-time decisions and actions.

Web app

https://share.streamlit.io/dan0nchik/sap-hana-automl/main/web.py

Documentation

https://sap-hana-automl.readthedocs.io/en/latest/index.html

Benchmarks

https://github.com/dan0nchik/SAP-HANA-AutoML/blob/main/comparison_openml.ipynb

ML tasks:

  • Binary classification
  • Regression
  • Multiclass classification
  • Forecasting

Steps automated:

  • Data exploration
  • Data preparation
  • Feature engineering
  • Model selection
  • Model training
  • Hyperparameter tuning

πŸ‘‡ By the end of summer 2021, blue part will be fully automated by our library Logo

Clients

Streamlit client Streamlit client

Built With

Getting Started

To get a package up and running, follow these simple steps.

Prerequisites

Make sure you have the following:

  1. βœ… Setup SAP HANA (skip this step if you have an instance with PAL enabled). There are 2 ways to do that.
    In HANA Cloud:

    • Create a free trial account
    • Setup an instance
    • Enable PAL - Predictive Analysis Library. It is vital to enable it because we use their algorithms.

    In Virtual Machine:

    • Rent a virtual machine in Azure, AWS, Google Cloud, etc.
    • Install HANA instance there or on your PC (if you have >32 Gb RAM).
    • Enable PAL - Predictive Analysis Library. It is vital to enable it because we use their algorithms.
  2. βœ… Installed software

  • Python > 3.6
    Skip this step if python --version returns > 3.6
  • Cython
    pip3 install Cython

Installation

There are 2 ways to install the library

  • Stable: from pypi
    pip3 install hana_automl
  • Latest: from the repository
    pip3 install https://github.com/dan0nchik/SAP-HANA-AutoML/archive/dev.zip
    Note: latest version may contain bugs, be careful!

After installation

Check that PAL (Predictive Analysis Library) is installed and roles are granted

  • Read docs section about that.
  • If you don't want to read docs, run this code
    from hana_automl.utils.scripts import setup_user
    from hana_ml.dataframe import ConnectionContext
    
    cc = ConnectionContext(address='address', user='user', password='password', port=39015)
    
    # replace with credentials of user that will be created or granted a role to run PAL.
    setup_user(connection_context=cc, username='user', password="password")

Usage

From code

Our library in a few lines of code

Connect to database.

from hana_ml.dataframe import ConnectionContext

cc = ConnectionContext(address='address',
                     user='username',
                     password='password',
                     port=1234)

Create AutoML model and fit it.

from hana_automl.automl import AutoML

model = AutoML(cc)
model.fit(
  file_path='path to training dataset', # it may be HANA table/view, or pandas DataFrame
  steps=10, # number of iterations
  target='target', # column to predict
  time_limit=120 # time limit in seconds
)

Predict.

model.predict(
file_path='path to test dataset',
id_column='ID',
verbose=1
)

For more examples, please refer to the Documentation

How to run Streamlit client

  1. Clone repository: git clone https://github.com/dan0nchik/SAP-HANA-AutoML.git
  2. Install dependencies: pip3 install -r requirements.txt
  3. Run GUI: streamlit run ./web.py

Roadmap

See the open issues for a list of proposed features (and known issues). Feel free to report any bugs :)

Contributing

Any contributions you make are greatly appreciated πŸ‘ !

  1. Fork the Project

  2. Create your Feature Branch (git checkout -b feature/NewFeature)

  3. Install dependencies

    pip3 install Cython
    pip3 install -r requirements.txt
  4. Create credentials.py file in tests directory Your files should look like this:

    SAP-HANA-AutoML
    β”‚   README.md
    β”‚   all other files   
    β”‚   .....
    |
    └───tests
        β”‚   test files...
        β”‚   credentials.py
    

    Copy and paste this piece of code there and replace it with your credentials:

    host = "host"
    user = "username"
    password = "password"
    port = 39015 # or any port you need
    schema = "your schema"

    Don't worry, this file is in .gitignore, so your credentials won't be seen by anyone.

  5. Make some changes

  6. Write tests that cover your code in tests directory

  7. Run tests (under SAP-HANA-AutoML directory)

    pytest
  8. Commit your changes (git commit -m 'Add some amazing features')

  9. Push to the branch (git push origin feature/AmazingFeature)

  10. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.
Don't really understand license? Check out the MIT license summary.

Contact

Authors: @While-true-codeanything, @DbusAI, @dan0nchik

Project Link: https://github.com/dan0nchik/SAP-HANA-AutoML

Owner
Daniel Khromov
Learning Swift, C#, and Data Science
Daniel Khromov
Machine Learning Course with Python:

A Machine Learning Course with Python Table of Contents Download Free Deep Learning Resource Guide Slack Group Introduction Motivation Machine Learnin

Instill AI 6.9k Jan 03, 2023
Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

1 Jan 01, 2022
MLFlow in a Dockercontainer based on Azurite and Postgres

mlflow-azurite-postgres docker This is a MLFLow image which works with a postgres DB and a local Azure Blob Storage Instance (Azurite). This image is

2 May 29, 2022
Management of exclusive GPU access for distributed machine learning workloads

TensorHive is an open source tool for managing computing resources used by multiple users across distributed hosts. It focuses on granting

PaweΕ‚ RoΕ›ciszewski 131 Dec 12, 2022
Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark environment.

pyspark-anonymizer Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark envir

6 Jun 30, 2022
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 06, 2023
Bottleneck a collection of fast, NaN-aware NumPy array functions written in C.

Bottleneck Bottleneck is a collection of fast, NaN-aware NumPy array functions written in C. As one example, to check if a np.array has any NaNs using

Python for Data 835 Dec 27, 2022
πŸ”¬ A curated list of awesome machine learning strategies & tools in financial market.

πŸ”¬ A curated list of awesome machine learning strategies & tools in financial market.

GeorgeZou 1.6k Dec 30, 2022
Python package for causal inference using Bayesian structural time-series models.

Python Causal Impact Causal inference using Bayesian structural time-series models. This package aims at defining a python equivalent of the R CausalI

Thomas Cassou 219 Dec 11, 2022
Gaussian Process Optimization using GPy

End of maintenance for GPyOpt Dear GPyOpt community! We would like to acknowledge the obvious. The core team of GPyOpt has moved on, and over the past

Sheffield Machine Learning Software 847 Dec 19, 2022
Adaptive: parallel active learning of mathematical functions

adaptive Adaptive: parallel active learning of mathematical functions. adaptive is an open-source Python library designed to make adaptive parallel fu

741 Dec 27, 2022
Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning

Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, define-by-run style user API.

7.4k Jan 04, 2023
Real-time stream processing for python

Streamz Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelin

Python Streamz 1.1k Dec 28, 2022
Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill

Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill This is a port of the amazing openskill.js package

Open Debates Project 156 Dec 14, 2022
A Pythonic framework for threat modeling

pytm: A Pythonic framework for threat modeling Introduction Traditional threat modeling too often comes late to the party, or sometimes not at all. In

Izar Tarandach 644 Dec 20, 2022
A python fast implementation of the famous SVD algorithm popularized by Simon Funk during Netflix Prize

⚑ funk-svd funk-svd is a Python 3 library implementing a fast version of the famous SVD algorithm popularized by Simon Funk during the Neflix Prize co

Geoffrey Bolmier 171 Dec 19, 2022
Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies

Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies. We have amassed a dataset of millions of rows of high-frequency market data dating back to 2018 w

Panagiotis (Panos) Mavritsakis 4 Sep 22, 2022
ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

Broad Institute 65 Dec 20, 2022
Evidently helps analyze machine learning models during validation or production monitoring

Evidently helps analyze machine learning models during validation or production monitoring. The tool generates interactive visual reports and JSON profiles from pandas DataFrame or csv files. Current

Evidently AI 3.1k Jan 07, 2023
XGBoost + Optuna

AutoXGB XGBoost + Optuna: no brainer auto train xgboost directly from CSV files auto tune xgboost using optuna auto serve best xgboot model using fast

abhishek thakur 517 Dec 31, 2022