Machine Learning approach for quantifying detector distortion fields

Overview

DistortionML

Machine Learning approach for quantifying detector distortion fields. This project is a feasibility study for training a surrogate model (possibly NN) to represent the distortion inherent to X-ray pinhole cameras using a nearby, divergent source.

Things to do:

  • remove the hexrd dependency
    • makea local version detectorXYToGvec
    • replace the use of the instrument module by extracting the necessary parameters directly from the HDF5 config file.
  • make a PyTorch implementation of the pinhole_camera_module
  • set up a test training problem

Running

This project currently depends on hexrd; the simplest way to get running is to use conda. It is highly recommended to put hexrd into its own virtual env:

conda create --name hexrd python=3.8 hexrd -c conda-forge -c hexrd

For the bleeding edge version of hexrd, the channel spec is

conda create --name hexrd python=3.8 hexrd -c conda-forge -c hexrd/label/hexrd-prerelease

The script compute_tth_displacement.py executes the distortion field calculation based on the single-detector instrument in resources/. It has a progress bar, and plots the distortion field when it completes. You can run it interactively in your favorite IDE, or IPython:

ipython -i compute_tth_displacement.py

Parameters

The editable parameters are all located in the following block at the top of the script:

# =============================================================================
# %% PARAMETERS
# ============================================================================='
resources_path = './resources'
ref_config = 'reference_instrument.hexrd'

# geometric paramters for source and pinhole (typical TARDIS)
#
# !!! All physical dimensions in mm
#
# !!! This is the minimal set we'd like to do the MCMC over; would like to also
#     include detector translation and at least rotation about its own normal.
rho = 32.                 # source distance
ph_radius = 0.200         # pinhole radius
ph_thickness = 0.100      # pinhole thickness
layer_standoff = 0.150    # offset to sample layer
layer_thickness = 0.01    # layer thickness

# Target voxel size
voxel_size = 0.2

The most sensitive parameter is voxel_size, which essentially will set the size of the problem, since the number of evaluations will increase quickly for increasing voxel size. Making layer_standoff larger will also increase the total number of voxels contributing for a particular voxel_size.

Owner
Joel Bernier
Joel Bernier
A machine learning model for Covid case prediction

CovidcasePrediction A machine learning model for Covid case prediction Problem Statement Using regression algorithms we can able to track the active c

VijayAadhithya2019rit 1 Feb 02, 2022
CVXPY is a Python-embedded modeling language for convex optimization problems.

CVXPY The CVXPY documentation is at cvxpy.org. We are building a CVXPY community on Discord. Join the conversation! For issues and long-form discussio

4.3k Jan 08, 2023
Implementation of the Object Relation Transformer for Image Captioning

Object Relation Transformer This is a PyTorch implementation of the Object Relation Transformer published in NeurIPS 2019. You can find the paper here

Yahoo 158 Dec 24, 2022
Python 3.6+ toolbox for submitting jobs to Slurm

Submit it! What is submitit? Submitit is a lightweight tool for submitting Python functions for computation within a Slurm cluster. It basically wraps

Facebook Incubator 768 Jan 03, 2023
A basic Ray Tracer that exploits numpy arrays and functions to work fast.

Python-Fast-Raytracer A basic Ray Tracer that exploits numpy arrays and functions to work fast. The code is written keeping as much readability as pos

Rafael de la Fuente 393 Dec 27, 2022
A simple machine learning package to cluster keywords in higher-level groups.

Simple Keyword Clusterer A simple machine learning package to cluster keywords in higher-level groups. Example: "Senior Frontend Engineer" -- "Fronte

Andrea D'Agostino 10 Dec 18, 2022
CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

Zelros 67 Dec 28, 2022
Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark environment.

pyspark-anonymizer Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark envir

6 Jun 30, 2022
A collection of machine learning examples and tutorials.

machine_learning_examples A collection of machine learning examples and tutorials.

LazyProgrammer.me 7.1k Jan 01, 2023
Bayesian Modeling and Computation in Python

Bayesian Modeling and Computation in Python Open access and Code This repository contains the open access version of the text and the code examples in

Bayesian Modeling and Computation in Python 339 Jan 02, 2023
Applied Machine Learning for Graduate Program in Computer Science (PPGCC)

Applied Machine Learning for Graduate Program in Computer Science (PPGCC) - Federal University of Santa Catarina

Jônatas Negri Grandini 1 Dec 22, 2021
To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

Astitva Veer Garg 1 Jan 11, 2022
Random Forest Classification for Neural Subtypes

Random Forest classifier for neural subtypes extracted from extracellular recordings from human brain organoids.

Michael Zabolocki 1 Jan 31, 2022
Temporal Alignment Prediction for Supervised Representation Learning and Few-Shot Sequence Classification

Temporal Alignment Prediction for Supervised Representation Learning and Few-Shot Sequence Classification Introduction. This package includes the pyth

5 Dec 06, 2022
Transform ML models into a native code with zero dependencies

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code

Bayes' Witnesses 2.3k Jan 03, 2023
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learn

Vowpal Wabbit 8.1k Dec 30, 2022
Machine Learning from Scratch

Machine Learning from Scratch Author: Shengxuan Wang From: Oregon State University Content: Building Machine Learning model from Scratch, without usin

ShawnWang 0 Jul 05, 2022
Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared

Feature-Engineering Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared. When the dataset

kemalgunay 5 Apr 21, 2022
Predicting diabetes over a five year period using logistic regression and the Pima First-Nation dataset

Diabetes This script uses the Pima First Nations dataset to create a model to predict whether or not an individual will develop Diabetes Mellitus Type

1 Mar 28, 2022
Code base of KU AIRS: SPARK Autonomous Vehicle Team

KU AIRS: SPARK Autonomous Vehicle Project Check this link for the blog post describing this project and the video of SPARK in simulation and on parkou

Mehmet Enes Erciyes 1 Nov 23, 2021