Python module for performing linear regression for data with measurement errors and intrinsic scatter

Overview

Linear regression for data with measurement errors and intrinsic scatter (BCES)

Python module for performing robust linear regression on (X,Y) data points where both X and Y have measurement errors.

The fitting method is the bivariate correlated errors and intrinsic scatter (BCES) and follows the description given in Akritas & Bershady. 1996, ApJ. Some of the advantages of BCES regression compared to ordinary least squares fitting (quoted from Akritas & Bershady 1996):

  • it allows for measurement errors on both variables
  • it permits the measurement errors for the two variables to be dependent
  • it permits the magnitudes of the measurement errors to depend on the measurements
  • other "symmetric" lines such as the bisector and the orthogonal regression can be constructed.

In order to understand how to perform and interpret the regression results, please read the paper.

Installation

Using pip:

pip install bces

If that does not work, you can install it using the setup.py script:

python setup.py install

You may need to run the last command with sudo.

Alternatively, if you plan to modify the source then install the package with a symlink, so that changes to the source files will be immediately available:

python setup.py develop

Usage

import bces.bces as BCES
a,b,aerr,berr,covab=BCES.bcesp(x,xerr,y,yerr,cov)

Arguments:

  • x,y : 1D data arrays
  • xerr,yerr: measurement errors affecting x and y, 1D arrays
  • cov : covariance between the measurement errors, 1D array

If you have no reason to believe that your measurement errors are correlated (which is usually the case), you can provide an array of zeroes as input for cov:

cov = numpy.zeros_like(x)

Output:

  • a,b : best-fit parameters a,b of the linear regression such that y = Ax + B.
  • aerr,berr : the standard deviations in a,b
  • covab : the covariance between a and b (e.g. for plotting confidence bands)

Each element of the arrays a, b, aerr, berr and covab correspond to the result of one of the different BCES lines: y|x, x|y, bissector and orthogonal, as detailed in the table below. Please read the original BCES paper to understand what these different lines mean.

Element Method Description
0 y|x Assumes x as the independent variable
1 x|y Assumes y as the independent variable
2 bissector Line that bisects the y|x and x|y. This approach is self-inconsistent, do not use this method, cf. Hogg, D. et al. 2010, arXiv:1008.4686.
3 orthogonal Orthogonal least squares: line that minimizes orthogonal distances. Should be used when it is not clear which variable should be treated as the independent one

By default, bcesp run in parallel with bootstrapping.

Examples

bces-example.ipynb is a jupyter notebook including a practical, step-by-step example of how to use BCES to perform regression on data with uncertainties on x and y. It also illustrates how to plot the confidence band for a fit.

If you have suggestions of more examples, feel free to add them.

Running Tests

To test your installation, run the following command inside the BCES directory:

pytest -v

Requirements

See requirements.txt.

Citation

If you end up using this code in your paper, you are morally obliged to cite the following works

I spent considerable time writing this code, making sure it is correct and user-friendly, so I would appreciate your citation of the second paper in the above list as a token of gratitude.

If you are really happy with the code, you can buy me a beer.

Misc.

This python module is inspired on the (much faster) fortran routine originally written Akritas et al. I wrote it because I wanted something more portable and easier to use, trading off speed.

For a general tutorial on how to (and how not to) perform linear regression, please read this paper: Hogg, D. et al. 2010, arXiv:1008.4686. In particular, please refrain from using the bisector method.

If you want to plot confidence bands for your fits, have a look at nmmn package (in particular, modules nmmn.plots.fitconf and stats).

Bayesian linear regression

There are a couple of Bayesian approaches to perform linear regression which can be more powerful than BCES, some of which are described below.

A Gibbs Sampler for Multivariate Linear Regression: R code, arXiv:1509.00908. Linear regression in the fairly general case with errors in X and Y, errors may be correlated, intrinsic scatter. The prior distribution of covariates is modeled by a flexible mixture of Gaussians. This is an extension of the very nice work by Brandon Kelly (Kelly, B. 2007, ApJ).

LIRA: A Bayesian approach to linear regression in astronomy: R code, arXiv:1509.05778 Bayesian hierarchical modelling of data with heteroscedastic and possibly correlated measurement errors and intrinsic scatter. The method fully accounts for time evolution. The slope, the normalization, and the intrinsic scatter of the relation can evolve with the redshift. The intrinsic distribution of the independent variable is approximated using a mixture of Gaussian distributions whose means and standard deviations depend on time. The method can address scatter in the measured independent variable (a kind of Eddington bias), selection effects in the response variable (Malmquist bias), and departure from linearity in form of a knee.

AstroML: Machine Learning and Data Mining for Astronomy. Python example of a linear fit to data with correlated errors in x and y using AstroML. In the literature, this is often referred to as total least squares or errors-in-variables fitting.

Todo

If you have improvements to the code, suggestions of examples,speeding up the code etc, feel free to submit a pull request.

  • implement weighted least squares (WLS)
  • implement unit testing: bces
  • unit testing: bootstrap

Visit the author's web page and/or follow him on twitter (@nemmen).


Copyright (c) 2021, Rodrigo Nemmen. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Owner
Rodrigo Nemmen
Professor of Astronomy & Astrophysics
Rodrigo Nemmen
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Dec 29, 2022
hgboost - Hyperoptimized Gradient Boosting

hgboost is short for Hyperoptimized Gradient Boosting and is a python package for hyperparameter optimization for xgboost, catboost and lightboost using cross-validation, and evaluating the results o

Erdogan Taskesen 34 Jan 03, 2023
Course files for "Ocean/Atmosphere Time Series Analysis"

time-series This package contains all necessary files for the course Ocean/Atmosphere Time Series Analysis, an introduction to data and time series an

Jonathan Lilly 107 Nov 29, 2022
Apache (Py)Spark type annotations (stub files).

PySpark Stubs A collection of the Apache Spark stub files. These files were generated by stubgen and manually edited to include accurate type hints. T

Maciej 114 Nov 22, 2022
Random Forest Classification for Neural Subtypes

Random Forest classifier for neural subtypes extracted from extracellular recordings from human brain organoids.

Michael Zabolocki 1 Jan 31, 2022
Flightfare-Prediction - It is a Flightfare Prediction Web Application Using Machine learning,Python and flask

Flight_fare-Prediction It is a Flight_fare Prediction Web Application Using Machine learning,Python and flask Using Machine leaning i have created a F

1 Dec 06, 2022
Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational model)

Sum-Square_Error-Business-Analytical-Tool- Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational m

om Podey 1 Dec 03, 2021
Add built-in support for quaternions to numpy

Quaternions in numpy This Python module adds a quaternion dtype to NumPy. The code was originally based on code by Martin Ling (which he wrote with he

Mike Boyle 531 Dec 28, 2022
Can a machine learning project be implemented to estimate the salaries of baseball players whose salary information and career statistics for 1986 are shared?

END TO END MACHINE LEARNING PROJECT ON HITTERS DATASET Can a machine learning project be implemented to estimate the salaries of baseball players whos

Pinar Oner 7 Dec 18, 2021
An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models

Seldon Core: Blazing Fast, Industry-Ready ML An open source platform to deploy your machine learning models on Kubernetes at massive scale. Overview S

Seldon 3.5k Jan 01, 2023
Module for statistical learning, with a particular emphasis on time-dependent modelling

Operating system Build Status Linux/Mac Windows tick tick is a Python 3 module for statistical learning, with a particular emphasis on time-dependent

X - Data Science Initiative 410 Dec 14, 2022
Time-series momentum for momentum investing strategy

Time-series-momentum Time-series momentum strategy. You can use the data_analysis.py file to find out the best trigger and window for a given asset an

Victor Caldeira 3 Jun 18, 2022
Nixtla is an open-source time series forecasting library.

Nixtla Nixtla is an open-source time series forecasting library. We are helping data scientists and developers to have access to open source state-of-

Nixtla 401 Jan 08, 2023
Conducted ANOVA and Logistic regression analysis using matplot library to visualize the result.

Intro-to-Data-Science Conducted ANOVA and Logistic regression analysis. Project ANOVA The main aim of this project is to perform One-Way ANOVA analysi

Chris Yuan 1 Feb 06, 2022
Open source time series library for Python

PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array

Ross Taylor 2k Jan 02, 2023
Python Automated Machine Learning library for tabular data.

Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Scie

Daniel Khromov 47 Dec 17, 2022
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

Facebook 15.4k Jan 07, 2023
MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.

The collaboration platform for Machine Learning MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine

MLReef 1.4k Dec 27, 2022
My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data

kNN-vs-RFR My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data In many areas, rental bikes have been launched to

1 Oct 28, 2021
Spark development environment for k8s

Local Spark Dev Env with Docker Development environment for k8s. Using the spark-operator image to ensure it will be the same environment. Start conta

Otacilio Filho 18 Jan 04, 2022