A benchmark of data-centric tasks from across the machine learning lifecycle.

Overview
banner

GitHub Workflow Status GitHub Documentation Status pre-commit PyPI - Python Version codecov

A benchmark of data-centric tasks from across the machine learning lifecycle.

Getting Started | What is dcbench? | Docs | Contributing | Website | About

⚡️ Quickstart

pip install dcbench

Optional: some parts of Meerkat rely on optional dependencies. If you know which optional dependencies you'd like to install, you can do so using something like pip install dcbench[dev] instead. See setup.py for a full list of optional dependencies.

Installing from dev: pip install "dcbench[dev] @ git+https://github.com/data-centric-ai/[email protected]"

Using a Jupyter notebook or some other interactive environment, you can import the library and explore the data-centric problems in the benchmark:

import dcbench
dcbench.tasks

To learn more, follow the walkthrough in the docs.

💡 What is dcbench?

This benchmark evaluates the steps in your machine learning workflow beyond model training and tuning. This includes feature cleaning, slice discovery, and coreset selection. We call these “data-centric” tasks because they're focused on exploring and manipulating data – not training models. dcbench supports a growing list of them:

dcbench includes tasks that look very different from one another: the inputs and outputs of the slice discovery task are not the same as those of the minimal data cleaning task. However, we think it important that researchers and practitioners be able to run evaluations on data-centric tasks across the ML lifecycle without having to learn a bunch of different APIs or rewrite evaluation scripts.

So, dcbench is designed to be a common home for these diverse, but related, tasks. In dcbench all of these tasks are structured in a similar manner and they are supported by a common Python API that makes it easy to download data, run evaluations, and compare methods.

✉️ About

dcbench is being developed alongside the data-centric-ai benchmark. Reach out to Bojan Karlaš (karlasb [at] inf [dot] ethz [dot] ch) and Sabri Eyuboglu (eyuboglu [at] stanford [dot] edu if you would like to get involved or contribute!)

You might also like...
Data science, Data manipulation and Machine learning package.
Data science, Data manipulation and Machine learning package.

duality Data science, Data manipulation and Machine learning package. Use permitted according to the terms of use and conditions set by the attached l

Data Version Control or DVC is an open-source tool for data science and machine learning projects
Data Version Control or DVC is an open-source tool for data science and machine learning projects

Continuous Machine Learning project integration with DVC Data Version Control or DVC is an open-source tool for data science and machine learning proj

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

A library of extension and helper modules for Python's data analysis and machine learning libraries.
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way
Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way

Apache Liminals goal is to operationalise the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validation, deployment and inference in production. Liminal provides a Domain Specific Language to build ML workflows on top of Apache Airflow.

Meerkat provides fast and flexible data structures for working with complex machine learning datasets.
Meerkat provides fast and flexible data structures for working with complex machine learning datasets.

Meerkat makes it easier for ML practitioners to interact with high-dimensional, multi-modal data. It provides simple abstractions for data inspection, model evaluation and model training supported by efficient and robust IO under the hood.

Comments
  •  No module named 'dcbench.tasks.budgetclean.cpclean'

    No module named 'dcbench.tasks.budgetclean.cpclean'

    After installing dcbench in Google colab environment, the above error was thrown for import dcbench. Full error traceback,

    ---------------------------------------------------------------------------
    ModuleNotFoundError                       Traceback (most recent call last)
    <ipython-input-8-a1030f6d7ef9> in <module>()
          1 
    ----> 2 import dcbench
          3 dcbench.tasks
    
    2 frames
    /usr/local/lib/python3.7/dist-packages/dcbench/__init__.py in <module>()
         13 )
         14 from .config import config
    ---> 15 from .tasks.budgetclean import BudgetcleanProblem
         16 from .tasks.minidata import MiniDataProblem
         17 from .tasks.slice_discovery import SliceDiscoveryProblem
    
    /usr/local/lib/python3.7/dist-packages/dcbench/tasks/budgetclean/__init__.py in <module>()
          3 from ...common import Task
          4 from ...common.table import Table
    ----> 5 from .baselines import cp_clean, random_clean
          6 from .common import Preprocessor
          7 from .problem import BudgetcleanProblem, BudgetcleanSolution
    
    /usr/local/lib/python3.7/dist-packages/dcbench/tasks/budgetclean/baselines.py in <module>()
          6 from ...common.baseline import baseline
          7 from .common import Preprocessor
    ----> 8 from .cpclean.algorithm.select import entropy_expected
          9 from .cpclean.algorithm.sort_count import sort_count_after_clean_multi
         10 from .cpclean.clean import CPClean, Querier
    
    ModuleNotFoundError: No module named 'dcbench.tasks.budgetclean.cpclean'
    

    !pip install dcbench gave the following log

    ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. 
    flask 1.1.4 requires click<8.0,>=5.1, but you have click 8.0.3 which is incompatible.
    datascience 0.10.6 requires coverage==3.7.1, but you have coverage 6.2 which is incompatible.
    datascience 0.10.6 requires folium==0.2.1, but you have folium 0.8.3 which is incompatible.
    coveralls 0.5 requires coverage<3.999,>=3.6, but you have coverage 6.2 which is incompatible.
    Successfully installed SecretStorage-3.3.1 aiohttp-3.8.1 aiosignal-1.2.0 antlr4-python3-runtime-4.8 async-timeout-4.0.2 asynctest-0.13.0 black-21.12b0 cfgv-3.3.1 click-8.0.3 colorama-0.4.4 commonmark-0.9.1 coverage-6.2 cryptography-36.0.1 cytoolz-0.11.2 dataclasses-0.6 datasets-1.17.0 dcbench-0.0.4 distlib-0.3.4 docformatter-1.4 flake8-4.0.1 frozenlist-1.2.0 fsspec-2021.11.1 future-0.18.2 fuzzywuzzy-0.18.0 fvcore-0.1.5.post20211023 huggingface-hub-0.2.1 identify-2.4.1 importlib-metadata-4.2.0 iopath-0.1.9 isort-5.10.1 jeepney-0.7.1 jsonlines-3.0.0 keyring-23.4.0 livereload-2.6.3 markdown-3.3.4 mccabe-0.6.1 meerkat-ml-0.2.3 multidict-5.2.0 mypy-extensions-0.4.3 nbsphinx-0.8.8 nodeenv-1.6.0 omegaconf-2.1.1 parameterized-0.8.1 pathspec-0.9.0 pkginfo-1.8.2 platformdirs-2.4.1 pluggy-1.0.0 portalocker-2.3.2 pre-commit-2.16.0 progressbar-2.5 pyDeprecate-0.3.1 pycodestyle-2.8.0 pyflakes-2.4.0 pytest-6.2.5 pytest-cov-3.0.0 pytorch-lightning-1.5.7 pyyaml-6.0 readme-renderer-32.0 recommonmark-0.7.1 requests-toolbelt-0.9.1 rfc3986-1.5.0 sphinx-autobuild-2021.3.14 sphinx-rtd-theme-1.0.0 torchmetrics-0.6.2 twine-3.7.1 typed-ast-1.5.1 ujson-5.1.0 untokenize-0.1.1 virtualenv-20.12.1 xxhash-2.0.2 yacs-0.1.8 yarl-1.7.2
    WARNING: The following packages were previously imported in this runtime:
      [pydevd_plugins]
    You must restart the runtime in order to use newly installed versions.
    

    python version : 3.7.12 platform: Linux-5.4.144+-x86_64-with-Ubuntu-18.04-bionic

    opened by mathav95raj 2
  • Slice discovery problem p_72411 misses files

    Slice discovery problem p_72411 misses files

    Hi,

    Thanks for this great tool!

    I'm loading slice discovery problems, however, the problem p_72411 misses files. Can you fix this SD problem?

    FileNotFoundError: [Errno 2] No such file or directory: '/home/user/.dcbench/slice_discovery/problem/artifacts/p_72411/test_predictions.mk/meta.yaml'
    
    opened by duguyue100 0
Releases(v-0.0.1-beta)
A Python library for choreographing your machine learning research.

A Python library for choreographing your machine learning research.

AI2 270 Jan 06, 2023
scikit-learn is a python module for machine learning built on top of numpy / scipy

About scikit-learn is a python module for machine learning built on top of numpy / scipy. The purpose of the scikit-learn-tutorial subproject is to le

Gael Varoquaux 122 Dec 12, 2022
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster

[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm

Daniel Han-Chen 1.4k Jan 01, 2023
pandas, scikit-learn, xgboost and seaborn integration

pandas, scikit-learn and xgboost integration.

299 Dec 30, 2022
Simple structured learning framework for python

PyStruct PyStruct aims at being an easy-to-use structured learning and prediction library. Currently it implements only max-margin methods and a perce

pystruct 666 Jan 03, 2023
Machine learning that just works, for effortless production applications

Machine learning that just works, for effortless production applications

Elisha Yadgaran 16 Sep 02, 2022
Implementation of different ML Algorithms from scratch, written in Python 3.x

Implementation of different ML Algorithms from scratch, written in Python 3.x

Gautam J 393 Nov 29, 2022
A Python package to preprocess time series

Disclaimer: This package is WIP. Do not take any APIs for granted. tspreprocess Time series can contain noise, may be sampled under a non fitting rate

Maximilian Christ 57 Dec 17, 2022
A library of sklearn compatible categorical variable encoders

Categorical Encoding Methods A set of scikit-learn-style transformers for encoding categorical variables into numeric by means of different techniques

2.1k Jan 07, 2023
Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn.

Repository Status for Scikit-learn Live webpage Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn. Running local

Thomas J. Fan 6 Dec 27, 2022
Deep Survival Machines - Fully Parametric Survival Regression

Package: dsm Python package dsm provides an API to train the Deep Survival Machines and associated models for problems in survival analysis. The under

Carnegie Mellon University Auton Lab 10 Dec 30, 2022
Transform ML models into a native code with zero dependencies

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code

Bayes' Witnesses 2.3k Jan 03, 2023
A machine learning web application for binary classification using streamlit

Machine Learning web App This is a machine learning web application for binary classification using streamlit options this application contains 3 clas

abdelhak mokri 1 Dec 20, 2021
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 03, 2023
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.

TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models

538 Jan 01, 2023
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Jan 05, 2023
Turns your machine learning code into microservices with web API, interactive GUI, and more.

Turns your machine learning code into microservices with web API, interactive GUI, and more.

Machine Learning Tooling 2.8k Jan 02, 2023
K-means clustering is a method used for clustering analysis, especially in data mining and statistics.

K Means Algorithm What is K Means This algorithm is an iterative algorithm that partitions the dataset according to their features into K number of pr

1 Nov 01, 2021
Time Series Prediction with tf.contrib.timeseries

TensorFlow-Time-Series-Examples Additional examples for TensorFlow Time Series(TFTS). Read a Time Series with TFTS From a Numpy Array: See "test_input

Zhiyuan He 476 Nov 17, 2022
Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models

Highly interpretable, sklearn-compatible classifier based on decision rules This is a scikit-learn compatible wrapper for the Bayesian Rule List class

Tamas Madl 482 Nov 19, 2022