Code for "ATISS: Autoregressive Transformers for Indoor Scene Synthesis", NeurIPS 2021

Related tags

Deep LearningATISS
Overview

ATISS: Autoregressive Transformers for Indoor Scene Synthesis

Example 1 Example 2 Example 3

This repository contains the code that accompanies our paper ATISS: Autoregressive Transformers for Indoor Scene Synthesis.

You can find detailed usage instructions for training your own models, using our pretrained models as well as performing the interactive tasks described in the paper below.

If you found this work influential or helpful for your research, please consider citing

@Inproceedings{Paschalidou2021NEURIPS,
  author = {Despoina Paschalidou and Amlan Kar and Maria Shugrina and Karsten Kreis and Andreas Geiger and Sanja Fidler},
  title = {ATISS: Autoregressive Transformers for Indoor Scene Synthesis},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year = {2021}
}

Installation & Dependencies

Our codebase has the following dependencies:

For the visualizations, we use simple-3dviz, which is our easy-to-use library for visualizing 3D data using Python and ModernGL and matplotlib for the colormaps. Note that simple-3dviz provides a lightweight and easy-to-use scene viewer using wxpython. If you wish you use our scripts for visualizing the generated scenes, you will need to also install wxpython. Note that for all the renderings in the paper we used NVIDIA's OMNIVERSE.

The simplest way to make sure that you have all dependencies in place is to use conda. You can create a conda environment called atiss using

conda env create -f environment.yaml
conda activate atiss

Next compile the extension modules. You can do this via

python setup.py build_ext --inplace
pip install -e .

Dataset

To evaluate a pretrained model or train a new model from scratch, you need to obtain the 3D-FRONT and the 3D-FUTURE dataset. To download both datasets, please refer to the instructions provided in the dataset's webpage. As soon as you have downloaded the 3D-FRONT and the 3D-FUTURE dataset, you are ready to start the preprocessing. In addition to a preprocessing script (preprocess_data.py), we also provide a very useful script for visualising 3D-FRONT scenes (render_threedfront_scene.py), which you can easily execute by running

python render_threedfront_scene.py SCENE_ID path_to_output_dir path_to_3d_front_dataset_dir path_to_3d_future_dataset_dir path_to_3d_future_model_info path_to_floor_plan_texture_images

You can also visualize the walls, the windows as well as objects with textures by setting the corresponding arguments. Apart from only visualizing the scene with scene id SCENE_ID, the render_threedfront_scene.py script also generates a subfolder in the output folder, specified via the path_to_output_dir argument that contains the .obj files as well as the textures of all objects in this scene.

Data Preprocessing

Once you have downloaded the 3D-FRONT and 3D-FUTURE datasets you need to run the preprocess_data.py script in order to prepare the data to be able to train your own models or generate new scenes using previously trained models. To run the preprocessing script simply run

python preprocess_data.py path_to_output_dir path_to_3d_front_dataset_dir path_to_3d_future_dataset_dir path_to_3d_future_model_info path_to_floor_plan_texture_images --dataset_filtering threed_front_bedroom

Note that you can choose the filtering for the different room types (e.g. bedrooms, living rooms, dining rooms, libraries) via the dataset_filtering argument. The path_to_floor_plan_texture_images is the path to a folder containing different floor plan textures that are necessary to render the rooms using a top-down orthographic projection. An example of such a folder can be found in the demo\floor_plan_texture_images folder.

This script starts by parsing all scenes from the 3D-FRONT dataset and then for each scene it generates a subfolder inside the path_to_output_dir that contains the information for all objects in the scene (boxes.npz), the room mask (room_mask.png) and the scene rendered using a top-down orthographic_projection (rendered_scene_256.png). Note that for the case of the living rooms and dining rooms you also need to change the size of the room during rendering to 6.2m from 3.1m, which is the default value, via the --room_side argument.

Morover, you will notice that the preprocess_data.py script takes a significant amount of time to parse all 3D-FRONT scenes. To reduce the waiting time, we cache the parsed scenes and save them to the /tmp/threed_front.pkl file. Therefore, once you parse the 3D-FRONT scenes once you can provide this path in the environment variable PATH_TO_SCENES for the next time you run this script as follows:

PATH_TO_SCENES="/tmp/threed_front.pkl" python preprocess_data.py path_to_output_dir path_to_3d_front_dataset_dir path_to_3d_future_dataset_dir path_to_3d_future_model_info path_to_floor_plan_texture_images --dataset_filtering threed_front_bedroom

Finally, to further reduce the pre-processing time, note that it is possible to run this script in multiple threads, as it automatically checks whether a scene has been preprocessed and if it is it moves forward to the next scene.

Usage

As soon as you have installed all dependencies and have generated the preprocessed data, you can now start training new models from scratch, evaluate our pre-trained models and visualize the generated scenes using one of our pre-trained models. All scripts expect a path to a config file. In the config folder you can find the configuration files for the different room types. Make sure to change the dataset_directory argument to the path where you saved the preprocessed data from before.

Scene Generation

To generate rooms using a previously trained model, we provide the generate_scenes.py script and you can execute it by running

python generate_scenes.py path_to_config_yaml path_to_output_dir path_to_3d_future_pickled_data path_to_floor_plan_texture_images --weight_file path_to_weight_file

where the argument --weight_file specifies the path to a trained model and the argument path_to_config_yaml defines the path to the config file used to train that particular model. By default this script randomly selects floor plans from the test set and conditioned on this floor plan it generate different arrangements of objects. Note that if you want to generate a scene conditioned on a specific floor plan, you can select it by providing its scene id via the --scene_id argument. In case you want to run this script headlessly you should set the --without_screen argument. Finally, the path_to_3d_future_pickled_data specifies the path that contains the parsed ThreedFutureDataset after being pickled.

Scene Completion && Object Placement

To perform scene completion, we provide the scene_completion.py script that can be executed by running

python scene_completion.py path_to_config_yaml path_to_output_dir path_to_3d_future_pickled_data path_to_floor_plan_texture_images --weight_file path_to_weight_file

where the argument --weight_file specifies the path to a trained model and the argument path_to_config_yaml defines the path to the config file used to train that particular model. For this script make sure that the encoding type in the config file has also the word eval in it. By default this script randomly selects a room from the test set and conditioned on this partial scene it populates the empty space with objects. However, you can choose a specific room via the --scene_id argument. This script can be also used to perform object placement. Namely starting from a partial scene add an object of a specific object category.

In the output directory, the scene_completion.py script generates two folders for each completion, one that contains the mesh files of the initial partial scene and another one that contains the mesh files of the completed scene.

Object Suggestions

We also provide a script that performs object suggestions based on a user-specified region of acceptable positions. Similar to the previous scripts you can execute by running

python object_suggestion.py path_to_config_yaml path_to_output_dir path_to_3d_future_pickled_data path_to_floor_plan_texture_images --weight_file path_to_weight_file

where the argument --weight_file specifies the path to a trained model and the argument path_to_config_yaml defines the path to the config file used to train that particular model. Also for this script, please make sure that the encoding type in the config file has also the word eval in it. By default this script randomly selects a room from the test set and the user can either choose to remove some objects or keep it unchanged. Subsequently, the user needs to specify the acceptable positions to place an object using 6 comma seperated numbers that define the bounding box of the valid positions. Similar to the previous scripts, it is possible to select a particular scene by choosing specific room via the --scene_id argument.

In the output directory, the object_suggestion.py script generates two folders in each run, one that contains the mesh files of the initial scene and another one that contains the mesh files of the completed scene with the suggested object.

Failure Cases Detection and Correction

We also provide a script that performs failure cases correction on a scene that contains a problematic object. You can simply execute it by running

python failure_correction.py path_to_config_yaml path_to_output_dir path_to_3d_future_pickled_data path_to_floor_plan_texture_images --weight_file path_to_weight_file

where the argument --weight_file specifies the path to a trained model and the argument path_to_config_yaml defines the path to the config file used to train that particular model. Also for this script, please make sure that the encoding type in the config file has also the word eval in it. By default this script randomly selects a room from the test set and the user needs to select an object inside the room that will be located in an unnatural position. Given the scene with the unnatural position, our model identifies the problematic object and repositions it in a more plausible position.

In the output directory, the falure_correction.py script generates two folders in each run, one that contains the mesh files of the initial scene with the problematic object and another one that contains the mesh files of the new scene.

Training

Finally, to train a new network from scratch, we provide the train_network.py script. To execute this script, you need to specify the path to the configuration file you wish to use and the path to the output directory, where the trained models and the training statistics will be saved. Namely, to train a new model from scratch, you simply need to run

python train_network.py path_to_config_yaml path_to_output_dir

Note that it is also possible to start from a previously trained model by specifying the --weight_file argument, which should contain the path to a previously trained model.

Note that, if you want to use the RAdam optimizer during training, you will have to also install to download and install the corresponding code from this repository.

We also provide the option to log the experiment's evolution using Weights & Biases. To do that, you simply need to set the --with_wandb_logger argument and of course to have installed wandb in your conda environment.

Relevant Research

Please also check out the following papers that explore similar ideas:

  • Fast and Flexible Indoor Scene Synthesis via Deep Convolutional Generative Models pdf
  • Sceneformer: Indoor Scene Generation with Transformers pdf
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
[AAAI 2021] EMLight: Lighting Estimation via Spherical Distribution Approximation and [ICCV 2021] Sparse Needlets for Lighting Estimation with Spherical Transport Loss

EMLight: Lighting Estimation via Spherical Distribution Approximation (AAAI 2021) Update 12/2021: We release our Virtual Object Relighting (VOR) Datas

Fangneng Zhan 144 Jan 06, 2023
Fast and Simple Neural Vocoder, the Multiband RNNMS

Multiband RNN_MS Fast and Simple vocoder, Multiband RNN_MS. Demo Quick training How to Use System Details Results References Demo ToDO: Link super gre

tarepan 5 Jan 11, 2022
The official implementation of CircleNet: Anchor-free Detection with Circle Representation, MICCAI 2030

CircleNet: Anchor-free Detection with Circle Representation The official implementation of CircleNet, MICCAI 2020 [PyTorch] [project page] [MICCAI pap

The Biomedical Data Representation and Learning Lab 45 Nov 18, 2022
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Model-based reinforcement learning in TensorFlow

Bellman Website | Twitter | Documentation (latest) What does Bellman do? Bellman is a package for model-based reinforcement learning (MBRL) in Python,

46 Nov 09, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
The all new way to turn your boring vector meshes into the new fad in town; Voxels!

Voxelator The all new way to turn your boring vector meshes into the new fad in town; Voxels! Notes: I have not tested this on a rotated mesh. With fu

6 Feb 03, 2022
Space Time Recurrent Memory Network - Pytorch

Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio

Phil Wang 50 Nov 07, 2021
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Håkon Hukkelås 30 Nov 18, 2022