Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Overview

Instance-wise Occlusion and Depth Orders in Natural Scenes

Official source code. Appears at CVPR 2022

This repository provides a new dataset, named InstaOrder, that can be used to understand the geometrical relationships of instances in an image. The dataset consists of 2.9M annotations of geometric orderings for class-labeled instances in 101K natural scenes. The scenes were annotated by 3,659 crowd-workers regarding (1) occlusion order that identifies occluder/occludee and (2) depth order that describes ordinal relations that consider relative distance from the camera. This repository also introduce a geometric order prediction network called InstaOrderNet, which is superior to state-of-the-art approaches.

Installation

This code has been developed under Anaconda(Python 3.6), Pytorch 1.7.1, torchvision 0.8.2 and CUDA 10.1. Please install following environments:

# build conda environment
conda create --name order python=3.6
conda activate order

# install requirements
pip install -r requirements.txt

# install COCO API
pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'

Visualization

Check InstaOrder_vis.ipynb to visualize InstaOrder dataset including instance masks, occlusion order, and depth order.

Training

The experiments folder contains train and test scripts of experiments demonstrated in the paper.

To train {MODEL} with {DATASET},

  1. Download {DATASET} following this.
  2. Set ${base_dir} correctly in experiments/{DATASET}/{MODEL}/config.yaml
  3. (Optional) To train InstaDepthNet, download MiDaS-v2.1 model-f6b98070.pt under ${base_dir}/data/out/InstaOrder_ckpt
  4. Run the script file as follow:
    sh experiments/{DATASET}/{MODEL}/train.sh
    
    # Example of training InstaOrderNet^o (Table3 in the main paper) from the scratch
    sh experiments/InstaOrder/InstaOrderNet_o/train.sh

Inference

  1. Download pretrained models InstaOrder_ckpt.zip (3.5G) and unzip files following the below structure. Pretrained models are named by {DATASET}_{MODEL}.pth.tar

    ${base_dir}
    |--data
    |    |--out
    |    |    |--InstaOrder_ckpt
    |    |    |    |--COCOA_InstaOrderNet_o.pth.tar
    |    |    |    |--COCOA_OrderNet.pth.tar
    |    |    |    |--COCOA_pcnet_m.pth.tar
    |    |    |    |--InstaOrder_InstaDepthNet_d.pth.tar
    |    |    |    |--InstaOrder_InstaDepthNet_od.pth.tar
    |    |    |    |--InstaOrder_InstaOrderNet_d.pth.tar
    |    |    |    |--InstaOrder_InstaOrderNet_o.pth.tar
    |    |    |    |--InstaOrder_InstaOrderNet_od.pth.tar
    |    |    |    |--InstaOrder_OrderNet.pth.tar
    |    |    |    |--InstaOrder_OrderNet_ext.pth.tar  
    |    |    |    |--InstaOrder_pcnet_m.pth.tar
    |    |    |    |--KINS_InstaOrderNet_o.pth.tar
    |    |    |    |--KINS_OrderNet.pth.tar
    |    |    |    |--KINS_pcnet_m.pth.tar
    
  2. (Optional) To test InstaDepthNet, download MiDaS-v2.1 model-f6b98070.pt under ${base_dir}/data/out/InstaOrder_ckpt

  3. Set ${base_dir} correctly in experiments/{DATASET}/{MODEL}/config.yaml

  4. To test {MODEL} with {DATASET}, run the script file as follow:

    sh experiments/{DATASET}/{MODEL}/test.sh
    
    # Example of reproducing the accuracy of InstaOrderNet^o (Table3 in the main paper)
    sh experiments/InstaOrder/InstaOrderNet_o/test.sh
    

Datasets

InstaOrder dataset

To use InstaOrder, download files following the below structure

${base_dir}
|--data
|    |--COCO
|    |    |--train2017/
|    |    |--val2017/
|    |    |--annotations/
|    |    |    |--instances_train2017.json
|    |    |    |--instances_val2017.json
|    |    |    |--InstaOrder_train2017.json
|    |    |    |--InstaOrder_val2017.json    

COCOA dataset

To use COCOA, download files following the below structure

${base_dir}
|--data
|    |--COCO
|    |    |--train2014/
|    |    |--val2014/
|    |    |--annotations/
|    |    |    |--COCO_amodal_train2014.json 
|    |    |    |--COCO_amodal_val2014.json
|    |    |    |--COCO_amodal_val2014.json

KINS dataset

To use KINS, download files following the below structure

${base_dir}
|--data
|    |--KINS
|    |    |--training/
|    |    |--testing/
|    |    |--instances_val.json
|    |    |--instances_train.json
  

DIW dataset

To use DIW, download files following the below structure

${base_dir}
|--data
|    |--DIW
|    |    |--DIW_test/
|    |    |--DIW_Annotations
|    |    |    |--DIW_test.csv   

Citing InstaOrder

If you find this code/data useful in your research then please cite our paper:

@inproceedings{lee2022instaorder,
  title={{Instance-wise Occlusion and Depth Orders in Natural Scenes}},
  author={Hyunmin Lee and Jaesik Park},
  booktitle={Proceedings of the {IEEE} Conference on Computer Vision and Pattern Recognition},
  year={2022}
}

Acknowledgement

We have reffered to and borrowed the implementations from Xiaohang Zhan

Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022
We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction

We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction. This repository aims to give easy access to state-of-the-art pre-train

GMUM 90 Jan 08, 2023
smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectious disease models: the COVID-19 case by Storvik et al

smc.covid smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectiou

0 Oct 15, 2021
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022
🥇Samsung AI Challenge 2021 1등 솔루션입니다🥇

MoT - Molecular Transformer Large-scale Pretraining for Molecular Property Prediction Samsung AI Challenge for Scientific Discovery This repository is

Jungwoo Park 44 Dec 03, 2022
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

STARS Laboratory 8 Sep 14, 2022
PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images

wrist-d PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images note: Paper: Under Review at MPDI Diagnostics Submission Date: Novemb

Fatih UYSAL 5 Oct 12, 2022
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022