Predictive Modeling & Analytics on Home Equity Line of Credit

Overview

Predictive Modeling & Analytics on Home Equity Line of Credit Data (Python)

HMEQ Data Set

In this assignment we will use Python to examine a data set containing Home Equity Loans. The data set contains two target variables. The first target, TARGET_BAD_FLAG indicates whether or not the loan defaulted. If the value is set to 1, then the loan went bad and the bank lost money. If the value is set to 0, the loan was repaid.

The second target, TARGET_LOSS_AMT, indicates the amount of money that was lost for loans that went bad. The remaining variables contain information about the customer at the time that the loan was issued.

This is the data that we will use throughout this class in order to develop predictive models that will be used to determine the level of risk for each loan.

As with all real world data, this data is far from perfect.

It contains both numerical and categorical variables. It contains missing data. It contains outliers.

Table of Contents

  • Data Preparation
  • Tree Based Models
  • Regression Based Models
  • Neural Network

Building Machine Learning Models

Developed different predictive models to determine the level risk of each loan based on whether or not loans defaulted, and loss amount on bad loans. Evaluated each model with ROC curve and RMSE accuracy metrics.

Data Preparation

  • Download the HMEQ Data set
  • Read the data into Python
  • Explore both the input and target variables using statistical techniques.
  • Explore both the input and target variables using graphs and other visualization.
  • Look for relationships between the input variables and the targets.
  • Fix (impute) all missing data.
  • Note: For numerical data, create a flag variable to indicate if the value was missing
  • Convert all categorical variables numeric variables

Tree Based Models

We will continue to use Python to develop predictive models. In this assignment, we will use three different tree based techniques to analyze the data: DECISION TREES, RANDOM FORESTS, and GRADIENT BOOSTING. The deliverables for each technique are given below.

Create a Training and Test Data Set:

Decision Trees:

  • Develop a decision tree to predict the probability of default
  • Calculate the accuracy of the model on both the training and test data set
  • Create a graph that shows the ROC curves for both the training and test data set. Clearly label each curve and display the Area Under the ROC curve.
  • Display the Decision Tree using a Graphviz program
  • List the variables included in the decision tree that predict loan default.
  • Develop a decision tree to predict the loss amount assuming that the loan defaults
  • Calculate the RMSE for both the training data set and the test data set
  • Display the Decision Tree using a Graphviz program
  • List the variables included in the decision tree that predict loss amount.

Random Forests:

  • Develop a Random Forest to predict the probability of default
  • Calculate the accuracy of the model on both the training and test data set
  • Create a graph that shows the ROC curves for both the training and test data set. Clearly label each curve and display the Area Under the ROC curve.
  • List the variables included in the Random Forest that predict loan default.
  • Develop a Random Forest to predict the loss amount assuming that the loan defaults
  • Calculate the RMSE for both the training data set and the test data set
  • List the variables included in the Random Forest that predict loss amount.

Gradient Boosting:

  • Develop a Gradient Boosting model to predict the probability of default
  • Calculate the accuracy of the model on both the training and test data set
  • Create a graph that shows the ROC curves for both the training and test data set. Clearly - label each curve and display the Area Under the ROC curve.
  • List the variables included in the Gradient Boosting that predict loan default.
  • Develop a Gradient Boosting to predict the loss amount assuming that the loan defaults
  • Calculate the RMSE for both the training data set and the test data set
  • List the variables included in the Gradient Boosting that predict loss amount.

ROC Curves:

  • Generate a ROC curve for the Decision Tree, Random Forest, and Gradient Boosting models using the Test Data Set
  • Use different colors for each curve and clearly label them
  • Include the Area under the ROC Curve (AUC) on the graph.

Regression Based Models

we will continue to use Python to develop predictive models. In this assignment, we will use two different types of regression: Linear and Logistic. We will use Logistic regression to determine the probability of a crash. Linear regression will be used to calculate the damages assuming that a crash occurs

Create a Training and Test Data Set:

Logistic Regression

  • Develop a logistic regression model to determine the probability of a loan default. Use all of the variables.
  • Develop a logistic regression model to determine the probability of a loan default. Use the variables that were selected by a DECISION TREE.
  • Develop a logistic regression model to determine the probability of a loan default. Use the variables that were selected by a RANDOM FOREST.
  • Develop a logistic regression model to determine the probability of a loan default. Use the variables that were selected by a GRADIENT BOOSTING model.
  • Develop a logistic regression model to determine the probability of a loan default. Use the variables that were selected by STEPWISE SELECTION.
  • For each of the models
    • Calculate the accuracy of the model on both the training and test data set
    • Create a graph that shows the ROC curves for both the training and test data set. Clearly label each curve and display the Area Under the ROC curve.
    • Display a ROC curve for the test data with all your models on the same graph (tree based and regression). Discuss which one is the most accurate. Which one would you recommend using?
    • For one of the Regression Models, print the coefficients. Do the variables make sense? If not, what would you recommend?

Linear Regression:

  • Develop a linear regression model to determine the expected loss if the loan defaults. Use all of the variables.
  • Develop a linear regression model to determine the expected loss if the loan defaults. Use the variables that were selected by a DECISION TREE.
  • Develop a linear regression model to determine the expected loss if the loan defaults. Use the variables that were selected by a RANDOM FOREST.
  • Develop a linear regression model to determine the expected loss if the loan defaults. Use the variables that were selected by a GRADIENT BOOSTING model.
  • Develop a linear regression model to determine the expected loss if the loan defaults. Use the variables that were selected by STEPWISE SELECTION.
  • For each of the models
    • Calculate the RMSE for both the training data set and the test data set
    • List the RMSE for the test data set for all of the models created (tree based and regression). Discuss which one is the most accurate. Which one would you recommend using?
    • For one of the Regression Models, print the coefficients. Do the variables make sense? If not, what would you recommend?

Neural Networks

we will continue to use Python to develop predictive models. In this assignment, we will use two different types of regression: Linear and Logistic. We will use Logistic regression to determine the probability of a crash. Linear regression will be used to calculate the damages assuming that a crash occurs.

Create a Training and Test Data Set:

Tensor Flow Model To Predict Loan Defaults:

  • Develop a model using Tensor Flow that will predict Loan Default.

    • For your model, do the following:
    • Try at least three different Activation Functions
    • Try one and two hidden layers
    • Try using a Dropout Layer
  • Explore using a variable selection technique

  • For each of the models

    • Calculate the accuracy of the model on both the training and test data set
    • Create a graph that shows the ROC curves for both the training and test data set.
    • Clearly label each curve and display the Area Under the ROC curve.
    • Display a ROC curve for the test data with all your models on the same graph (tree based, regression, and TF). Discuss which one is the most accurate. Which one would you recommend using?

Tensor Flow Model to Predict Loss Given Default:

  • Develop a model using Tensor Flow that will predict Loan Default.
  • For your model, do the following:
    • Try at least three different Activation Functions
    • Try one and two hidden layers
    • Try using a Dropout Layer
  • Explore using a variable selection technique
  • For each of the models
    • Calculate the RMSE for both the training data set and the test data set
    • List the RMSE for the test data set for all of the models created (tree based, regression, and TF). Discuss which one is the most accurate. Which one would you recommend using?

Data Dictionary

VARIABLE DEFINITION ROLE TYPE CONVENTIONAL WISDOM
TARGET_BAD_FLAG BAD=1 (Loan was defaulted) TARGET BINARY HMEQ = Home Equity Line of Credit Loan. BINARY TARGET
TARGET_LOSS_AMT If loan was Bad, this was the amount not repaid. TARGET NUMBER HMEQ = Home Equity Line of Credit Loan. NUMERICAL TARGET
LOAN HMEQ Credit Line INPUT NUMBER The bigger the loan, the more risky the person
MORTDUE Current Outstanding Mortgage Balance INPUT NUMBER If you owe a lot of money on your current mortgage versus the value of your house, you are more risky.
VALUE Value of your house INPUT NUMBER If you owe a lot of money on your current mortgage versus the value of your house, you are more risky.
REASON Why do you want a loan? INPUT CATEGORY If you are consolidating debt, that might mean you are having financial trouble.
JOB What do you do for a living? INPUT CATEGORY Some jobs are unstable (and therefore are more risky)
YOJ Years on Job INPUT NUMBER If you habe been at your job for a while, you are less likely to lose that job. That makes you less risky.
DEROG Derogatory Marks on Credit Record. These are very bad things that stay on your credit report for 7 years. These include bankruptcies or leins placed on your property. INPUT NUMBER Lots of Derogatories mean that something really bad happened to you (such as a bankruptcy) in your past. This makes you more risky.
DELINQ Delinquencies on your current credit report. This refers to the number of times you were overdue when paying bills in the last three years. INPUT NUMBER When you have a lot of delinquencies, you might be more likely to default on a loan.
CLAGE Credit Line Age (in months) is how long you have had credit. Are you a new high school student with a new credit card or have you had credit cards for many years? INPUT NUMBER If you have had credit for a long time, you are considered less risky than a new high school student.
NINQ Number of inquiries. This is the number of times within the last 3 years that you went out looking for credit (such as opening a credit card at a store) INPUT NUMBER Conventional wisdom in that if you are looking for more credit, you might be in financial trouble. Thus you are risky.
CLNO Number of credit lines you have (credit cards, loans, etc.). INPUT NUMBER This is a double edged swoard. Peole who have a lot of credit lines tend to be safe. The reason is that if OTHER PEOPLE think you are trustworthy enough for a credit card, then maybe you are. However, if you have too many credit lines, you might be risky because you have the potential to run up a lot of debt.
DEBTINC Debt to Income Ratio. Take the money you spend every month and divide it by the amount of money you earn every month. INPUT NUMBER If your debt to income ratio is high then you are risky because you might not be able to pay your bills.
Owner
Dhaval Patel
Dhaval Patel
Evaluation of a Monocular Eye Tracking Set-Up

Evaluation of a Monocular Eye Tracking Set-Up As part of my master thesis, I implemented a new state-of-the-art model that is based on the work of Che

Pascal 19 Dec 17, 2022
SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

SNV Pipeline SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

East Genomics 1 Nov 02, 2021
cLoops2: full stack analysis tool for chromatin interactions

cLoops2: full stack analysis tool for chromatin interactions Introduction cLoops2 is an extension of our previous work, cLoops. From loop-calling base

YaqiangCao 25 Dec 14, 2022
A data parser for the internal syncing data format used by Fog of World.

A data parser for the internal syncing data format used by Fog of World. The parser is not designed to be a well-coded library with good performance, it is more like a demo for showing the data struc

Zed(Zijun) Chen 40 Dec 12, 2022
ForecastGA is a Python tool to forecast Google Analytics data using several popular time series models.

ForecastGA is a tool that combines a couple of popular libraries, Atspy and googleanalytics, with a few enhancements.

JR Oakes 36 Jan 03, 2023
Provide a market analysis (R)

market-study Provide a market analysis (R) - FRENCH Produisez une étude de marché Prérequis Pour effectuer ce projet, vous devrez maîtriser la manipul

1 Feb 13, 2022
Calculate multilateral price indices in Python (with Pandas and PySpark).

IndexNumCalc Calculate multilateral price indices using the GEKS-T (CCDI), Time Product Dummy (TPD), Time Dummy Hedonic (TDH), Geary-Khamis (GK) metho

Dr. Usman Kayani 3 Apr 27, 2022
Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle.

2019-indian-election-eda Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle. This project is a part of the Cou

Souradeep Banerjee 5 Oct 10, 2022
Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Teo Calvo 5 Apr 26, 2022
Validation and inference over LinkML instance data using souffle

Translates LinkML schemas into Datalog programs and executes them using Souffle, enabling advanced validation and inference over instance data

Linked data Modeling Language 7 Aug 07, 2022
Generate lookml for views from dbt models

dbt2looker Use dbt2looker to generate Looker view files automatically from dbt models. Features Column descriptions synced to looker Dimension for eac

lightdash 126 Dec 28, 2022
MIR Cheatsheet - Survival Guidebook for MIR Researchers in the Lab

MIR Cheatsheet - Survival Guidebook for MIR Researchers in the Lab

SeungHeonDoh 3 Jul 02, 2022
Incubator for useful bioinformatics code, primarily in Python and R

Collection of useful code related to biological analysis. Much of this is discussed with examples at Blue collar bioinformatics. All code, images and

Brad Chapman 560 Jan 03, 2023
Big Data & Cloud Computing for Oceanography

DS2 Class 2022, Big Data & Cloud Computing for Oceanography Home of the 2022 ISblue Big Data & Cloud Computing for Oceanography class (IMT-A, ENSTA, I

Ocean's Big Data Mining 5 Mar 19, 2022
NFCDS Workshop Beginners Guide Bioinformatics Data Analysis

Genomics Workshop FIXME: overview of workshop Code of Conduct All participants s

Elizabeth Brooks 2 Jun 13, 2022
Pip install minimal-pandas-api-for-polars

Minimal Pandas API for Polars Install From PyPI: pip install minimal-pandas-api-for-polars Example Usage (see tests/test_minimal_pandas_api_for_polars

Austin Ray 6 Oct 16, 2022
NumPy aware dynamic Python compiler using LLVM

Numba A Just-In-Time Compiler for Numerical Functions in Python Numba is an open source, NumPy-aware optimizing compiler for Python sponsored by Anaco

Numba 8.2k Jan 07, 2023
songplays datamart provide details about the musical taste of our customers and can help us to improve our recomendation system

Songplays User activity datamart The following document describes the model used to build the songplays datamart table and the respective ETL process.

Leandro Kellermann de Oliveira 1 Jul 13, 2021
Semi-Automated Data Processing

Perform semi automated exploratory data analysis, feature engineering and feature selection on provided dataset by visualizing every possibilities on each step and assisting the user to make a meanin

Arun Singh Babal 1 Jan 17, 2022
OpenARB is an open source program aiming to emulate a free market while encouraging players to participate in arbitrage in order to increase working capital.

Overview OpenARB is an open source program aiming to emulate a free market while encouraging players to participate in arbitrage in order to increase

Tom 3 Feb 12, 2022