SparseLasso: Sparse Solutions for the Lasso

Overview

SparseLasso: Sparse Solutions for the Lasso

Introduction

SparseLasso provides a Scikit-Learn based estimation of the Lasso with cross-validation tuning for the penalty choice using the 'one standard error' rule to yield sparse solutions. The 'one standard error' rule recognizes the fact that the cross-validation path is estimated with error and selects the more parsimonious model (see Hastie, Tibshirani and Friedman, 2009). This rule thus chooses the largest possible penalty which is still within the one standard error of the cross-validation optimal value. Given that the Lasso often selects too many variables in practice, the one standard error rule provides a practical solution to yield sparser models. The software implementation of this rule is readily available in the R-package 'glmnet' (Friedman, Hastie and Tibshirani, 2010), however, it is absent from the Scikit-Learn module (Pedregosa et al., 2011). SparseLasso provides estimation of the penalized linear and logistic model based on Scikit-Learn's LassoCV and LogisticRegressionCV, respectively and thus accepts the standard Scikit-Learn arguments.

Installation

SparseLasso module relies on Python 3 and is based on the scikit-learn module. The required modules can be installed by navigating to the root of this project and executing the following command: pip install -r requirements.txt.

Example

The example below demonstrates the basic usage of the SparseLasso module.

# import modules
import pandas as pd
import numpy as np
from sklearn.datasets import make_regression
from sklearn.linear_model import LassoCV

# import SparseLasso
from sparse_lasso import SparseLassoCV

# simulate some example data for the linear model
X, y, coef = make_regression(n_samples=1000,
                             n_features=100, 
                             n_informative=10,
                             noise=10,
                             coef=True,
                             random_state=0)

# estimate standard LassoCV with optimal lambda minimizing error
lasso_min = LassoCV(n_alphas=100, cv=10).fit(X=X, y=y)

# estimate SparseLassoCV with lambda using 1 standard error rule
lasso_1se = SparseLassoCV(n_alphas=100, cv=10).fit(X=X, y=y)

# compare the penalty values
print('Lasso Min Penalty: ', round(lasso_min.alpha_, 2), '\n',
      'Lasso 1se Penalty: ', round(lasso_1se.alpha, 2), '\n')

# compare the number of selected features
print('Lasso Min Number of Selected Variables:     ',
      np.sum((lasso_min.coef_ != 0) * 1), '\n',
      'Lasso 1se Number of Selected Variables:     ',
      np.sum((lasso_1se.coef_ != 0) * 1), '\n')

For a more detailed example see the sparse_lasso_example.py as well as the sparse_lasso_simulation.py for a simulation exercise comparing the optimal cross-validation penalty choice with the one standard error rule for variable selection.

References

  • Hastie, Trevor, Robert Tibshirani, and J H. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. , 2009. Print.
  • Friedman, Jerome, Trevor Hastie, and Rob Tibshirani. "Regularization paths for generalized linear models via coordinate descent." Journal of statistical software 33.1 (2010): 1.
  • Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." the Journal of machine Learning research 12 (2011): 2825-2830.
Owner
Gabriel Okasa
PhD Candidate in Econometrics at the University of St.Gallen, Switzerland
Gabriel Okasa
Using Python to derive insights on particular Pokemon, Types, Generations, and Stats

Pokémon Analysis Andreas Nikolaidis February 2022 Introduction Exploratory Analysis Correlations & Descriptive Statistics Principal Component Analysis

Andreas 1 Feb 18, 2022
Shot notebooks resuming the main functions of GeoPandas

Shot notebooks resuming the main functions of GeoPandas, 2 notebooks written as Exercises to apply these functions.

1 Jan 12, 2022
Common bioinformatics database construction

biodb Common bioinformatics database construction 1.taxonomy (Substance classification database) Download the database wget -c https://ftp.ncbi.nlm.ni

sy520 2 Jan 04, 2022
Handle, manipulate, and convert data with units in Python

unyt A package for handling numpy arrays with units. Often writing code that deals with data that has units can be confusing. A function might return

The yt project 304 Jan 02, 2023
Leverage Twitter API v2 to analyze tweet metrics such as impressions and profile clicks over time.

Tweetmetric Tweetmetric allows you to track various metrics on your most recent tweets, such as impressions, retweets and clicks on your profile. The

Mathis HAMMEL 29 Oct 18, 2022
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023
An experimental project I'm undertaking for the sole purpose of increasing my Python knowledge

5ePy is an experimental project I'm undertaking for the sole purpose of increasing my Python knowledge. #Goals Goal: Create a working, albeit lightwei

Hayden Covington 1 Nov 24, 2021
Python script to automate the plotting and analysis of percentage depth dose and dose profile simulations in TOPAS.

topas-create-graphs A script to automatically plot the results of a topas simulation Works for percentage depth dose (pdd) and dose profiles (dp). Dep

Sebastian Schäfer 10 Dec 08, 2022
A forecasting system dedicated to smart city data

smart-city-predictions System prognostyczny dedykowany dla danych inteligentnych miast Praca inżynierska realizowana przez Michała Stawikowskiego and

Kevin Lai 1 Nov 08, 2021
Python utility to extract differences between two pandas dataframes.

Python utility to extract differences between two pandas dataframes.

Jaime Valero 8 Jan 07, 2023
Yet Another Workflow Parser for SecurityHub

YAWPS Yet Another Workflow Parser for SecurityHub "Screaming pepper" by Rum Bucolic Ape is licensed with CC BY-ND 2.0. To view a copy of this license,

myoung34 8 Dec 22, 2022
Pandas-based utility to calculate weighted means, medians, distributions, standard deviations, and more.

weightedcalcs weightedcalcs is a pandas-based Python library for calculating weighted means, medians, standard deviations, and more. Features Plays we

Jeremy Singer-Vine 98 Dec 31, 2022
BAyesian Model-Building Interface (Bambi) in Python.

Bambi BAyesian Model-Building Interface in Python Overview Bambi is a high-level Bayesian model-building interface written in Python. It's built on to

861 Dec 29, 2022
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
PyIOmica (pyiomica) is a Python package for omics analyses.

PyIOmica (pyiomica) This repository contains PyIOmica, a Python package that provides bioinformatics utilities for analyzing (dynamic) omics datasets.

G. Mias Lab 13 Jun 29, 2022
Tools for analyzing data collected with a custom unity-based VR for insects.

unityvr Tools for analyzing data collected with a custom unity-based VR for insects. Organization: The unityvr package contains the following submodul

Hannah Haberkern 1 Dec 14, 2022
The Dash Enterprise App Gallery "Oil & Gas Wells" example

This app is based on the Dash Enterprise App Gallery "Oil & Gas Wells" example. For more information and more apps see: Dash App Gallery See the Dash

Austin Caudill 1 Nov 08, 2021
Find exposed data in Azure with this public blob scanner

BlobHunter A tool for scanning Azure blob storage accounts for publicly opened blobs. BlobHunter is a part of "Hunting Azure Blobs Exposes Millions of

CyberArk 250 Jan 03, 2023
MS in Data Science capstone project. Studying attacks on autonomous vehicles.

Surveying Attack Models for CAVs Guide to Installing CARLA and Collecting Data Our project focuses on surveying attack models for Connveced Autonomous

Isabela Caetano 1 Dec 09, 2021
A 2-dimensional physics engine written in Cairo

A 2-dimensional physics engine written in Cairo

Topology 38 Nov 16, 2022