SparseLasso: Sparse Solutions for the Lasso

Overview

SparseLasso: Sparse Solutions for the Lasso

Introduction

SparseLasso provides a Scikit-Learn based estimation of the Lasso with cross-validation tuning for the penalty choice using the 'one standard error' rule to yield sparse solutions. The 'one standard error' rule recognizes the fact that the cross-validation path is estimated with error and selects the more parsimonious model (see Hastie, Tibshirani and Friedman, 2009). This rule thus chooses the largest possible penalty which is still within the one standard error of the cross-validation optimal value. Given that the Lasso often selects too many variables in practice, the one standard error rule provides a practical solution to yield sparser models. The software implementation of this rule is readily available in the R-package 'glmnet' (Friedman, Hastie and Tibshirani, 2010), however, it is absent from the Scikit-Learn module (Pedregosa et al., 2011). SparseLasso provides estimation of the penalized linear and logistic model based on Scikit-Learn's LassoCV and LogisticRegressionCV, respectively and thus accepts the standard Scikit-Learn arguments.

Installation

SparseLasso module relies on Python 3 and is based on the scikit-learn module. The required modules can be installed by navigating to the root of this project and executing the following command: pip install -r requirements.txt.

Example

The example below demonstrates the basic usage of the SparseLasso module.

# import modules
import pandas as pd
import numpy as np
from sklearn.datasets import make_regression
from sklearn.linear_model import LassoCV

# import SparseLasso
from sparse_lasso import SparseLassoCV

# simulate some example data for the linear model
X, y, coef = make_regression(n_samples=1000,
                             n_features=100, 
                             n_informative=10,
                             noise=10,
                             coef=True,
                             random_state=0)

# estimate standard LassoCV with optimal lambda minimizing error
lasso_min = LassoCV(n_alphas=100, cv=10).fit(X=X, y=y)

# estimate SparseLassoCV with lambda using 1 standard error rule
lasso_1se = SparseLassoCV(n_alphas=100, cv=10).fit(X=X, y=y)

# compare the penalty values
print('Lasso Min Penalty: ', round(lasso_min.alpha_, 2), '\n',
      'Lasso 1se Penalty: ', round(lasso_1se.alpha, 2), '\n')

# compare the number of selected features
print('Lasso Min Number of Selected Variables:     ',
      np.sum((lasso_min.coef_ != 0) * 1), '\n',
      'Lasso 1se Number of Selected Variables:     ',
      np.sum((lasso_1se.coef_ != 0) * 1), '\n')

For a more detailed example see the sparse_lasso_example.py as well as the sparse_lasso_simulation.py for a simulation exercise comparing the optimal cross-validation penalty choice with the one standard error rule for variable selection.

References

  • Hastie, Trevor, Robert Tibshirani, and J H. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. , 2009. Print.
  • Friedman, Jerome, Trevor Hastie, and Rob Tibshirani. "Regularization paths for generalized linear models via coordinate descent." Journal of statistical software 33.1 (2010): 1.
  • Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." the Journal of machine Learning research 12 (2011): 2825-2830.
Owner
Gabriel Okasa
PhD Candidate in Econometrics at the University of St.Gallen, Switzerland
Gabriel Okasa
PrimaryBid - Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift

Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift This project is composed of two parts: Part1 and Part2

Emmanuel Boateng Sifah 1 Jan 19, 2022
Analyze the Gravitational wave data stored at LIGO/VIRGO observatories

Gravitational-Wave-Analysis This project showcases how to analyze the Gravitational wave data stored at LIGO/VIRGO observatories, using Python program

1 Jan 23, 2022
A simple and efficient tool to parallelize Pandas operations on all available CPUs

Pandaral·lel Without parallelization With parallelization Installation $ pip install pandarallel [--upgrade] [--user] Requirements On Windows, Pandara

Manu NALEPA 2.8k Dec 31, 2022
Tools for the analysis, simulation, and presentation of Lorentz TEM data.

ltempy ltempy is a set of tools for Lorentz TEM data analysis, simulation, and presentation. Features Single Image Transport of Intensity Equation (SI

McMorran Lab 1 Dec 26, 2022
INF42 - Topological Data Analysis

TDA INF421(Conception et analyse d'algorithmes) Projet : Topological Data Analysis SphereMin Etant donné un nuage des points, ce programme contient de

2 Jan 07, 2022
The lastest all in one bombing tool coded in python uses tbomb api

BaapG-Attack is a python3 based script which is officially made for linux based distro . It is inbuit mass bomber with sms, mail, calls and many more bombing

59 Dec 25, 2022
A DSL for data-driven computational pipelines

"Dataflow variables are spectacularly expressive in concurrent programming" Henri E. Bal , Jennifer G. Steiner , Andrew S. Tanenbaum Quick overview Ne

1.9k Jan 03, 2023
Template for a Dataflow Flex Template in Python

Dataflow Flex Template in Python This repository contains a template for a Dataflow Flex Template written in Python that can easily be used to build D

STOIX 5 Apr 28, 2022
A Python adaption of Augur to prioritize cell types in perturbation analysis.

A Python adaption of Augur to prioritize cell types in perturbation analysis.

Theis Lab 2 Mar 29, 2022
A Python and R autograding solution

Otter-Grader Otter Grader is a light-weight, modular open-source autograder developed by the Data Science Education Program at UC Berkeley. It is desi

Infrastructure Team 93 Jan 03, 2023
Statistical Rethinking course winter 2022

Statistical Rethinking (2022 Edition) Instructor: Richard McElreath Lectures: Uploaded Playlist and pre-recorded, two per week Discussion: Online, F

Richard McElreath 3.9k Dec 31, 2022
A multi-platform GUI for bit-based analysis, processing, and visualization

A multi-platform GUI for bit-based analysis, processing, and visualization

Mahlet 529 Dec 19, 2022
BErt-like Neurophysiological Data Representation

BENDR BErt-like Neurophysiological Data Representation This repository contains the source code for reproducing, or extending the BERT-like self-super

114 Dec 23, 2022
Python beta calculator that retrieves stock and market data and provides linear regressions.

Stock and Index Beta Calculator Python script that calculates the beta (β) of a stock against the chosen index. The script retrieves the data and resa

sammuhrai 4 Jul 29, 2022
Port of dplyr and other related R packages in python, using pipda.

Unlike other similar packages in python that just mimic the piping syntax, datar follows the API designs from the original packages as much as possible, and is tested thoroughly with the cases from t

179 Dec 21, 2022
Programmatically access the physical and chemical properties of elements in modern periodic table.

API to fetch elements of the periodic table in JSON format. Uses Pandas for dumping .csv data to .json and Flask for API Integration. Deployed on "pyt

the techno hack 3 Oct 23, 2022
Top 50 best selling books on amazon

It's a dashboard that shows the detailed information about each book in the top 50 best selling books on amazon over the last ten years

Nahla Tarek 1 Nov 18, 2021
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
PLStream: A Framework for Fast Polarity Labelling of Massive Data Streams

PLStream: A Framework for Fast Polarity Labelling of Massive Data Streams Motivation When dataset freshness is critical, the annotating of high speed

4 Aug 02, 2022
Hydrogen (or other pure gas phase species) depressurization calculations

HydDown Hydrogen (or other pure gas phase species) depressurization calculations This code is published under an MIT license. Install as simple as: pi

Anders Andreasen 13 Nov 26, 2022