Time ranges with python

Overview

Discord

Badges
Build Python package semantic-release PyPI Read the Docs
Tests coverage pre-commit
Standards SemVer 2.0.0 Conventional Commits
Code Code style: black Imports: isort Checked with mypy
Repo GitHub issues GitHub stars GitHub license All Contributors Contributor Covenant

timeranges

Time ranges.

Read the Docs

Installation

pip

timeranges is available on pip:

pip install timeranges

GitHub

You can also install the latest version of the code directly from GitHub:

pip install git+git://github.com/MicaelJarniac/timeranges

Usage

For more examples, see the full documentation.

10:00" time_range = TimeRange(time(0), time(10)) # Check if these times are contained in `time_range` assert time(0) in time_range assert time(5) in time_range assert time(10) in time_range # Check if these times aren't contained in `time_range` assert time(10, 0, 1) not in time_range assert time(11) not in time_range assert time(20) not in time_range time_range_2 = TimeRange(time(15), time(20)) time_ranges = TimeRanges([time_range, time_range_2]) assert time(0) in time_ranges assert time(5) in time_ranges assert time(10) in time_ranges assert time(12) not in time_ranges assert time(15) in time_ranges assert time(17) in time_ranges assert time(20) in time_ranges assert time(22) not in time_ranges ">
from datetime import time

from timeranges import TimeRange, TimeRanges, WeekRange, Weekday


# Create a `TimeRange` instance with the interval "0:00 -> 10:00"
time_range = TimeRange(time(0), time(10))

# Check if these times are contained in `time_range`
assert time(0) in time_range
assert time(5) in time_range
assert time(10) in time_range

# Check if these times aren't contained in `time_range`
assert time(10, 0, 1) not in time_range
assert time(11) not in time_range
assert time(20) not in time_range


time_range_2 = TimeRange(time(15), time(20))
time_ranges = TimeRanges([time_range, time_range_2])

assert time(0) in time_ranges
assert time(5) in time_ranges
assert time(10) in time_ranges
assert time(12) not in time_ranges
assert time(15) in time_ranges
assert time(17) in time_ranges
assert time(20) in time_ranges
assert time(22) not in time_ranges

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

More details can be found in CONTRIBUTING.

Contributors

License

MIT

Created from cookiecutter-python-project.

Comments
  • fix: proper handling with empty structures

    fix: proper handling with empty structures

    As presented in https://github.com/tractian/tractian-python-sdk/issues/30#issuecomment-993901186,

    • empty dictionary in day_ranges means all days, with this, any datetime should return True in __contains__
    • empty list in time_ranges means all hours, with this, any datetime at the same weekday should return True in __contains__ The actual PR is a suggestion to this behavior works, which is not working properly.

    Examples of misleading behavior:

    • Datetime in a weekday with empty list as time_ranges image
    • Datetime not in a empty dict as day_ranges image
    opened by lucascust2 1
  • docs: add MicaelJarniac as a contributor for bug, code, doc, example, ideas, maintenance, projectManagement, review, tool, test

    docs: add MicaelJarniac as a contributor for bug, code, doc, example, ideas, maintenance, projectManagement, review, tool, test

    Add @MicaelJarniac as a contributor for bug, code, doc, example, ideas, maintenance, projectManagement, review, tool, test.

    This was requested by MicaelJarniac in this comment

    opened by allcontributors[bot] 0
  • Fix public API

    Fix public API

    On VS Code, if I type

    from timeranges import
    

    it doesn't auto-complete.

    Something about the way I'm "exporting" the public items on __init__.py isn't quite right.

    bug 
    opened by MicaelJarniac 0
  • Create a method for getting a fully-filled object

    Create a method for getting a fully-filled object

    Something like TimeRanges.full() that'd return TimeRanges([TimeRange()]), and WeekRange.full() that'd return WeekRange({Weekday.MONDAY: TimeRanges.full(), ...}) (with all days of the week).

    enhancement 
    opened by MicaelJarniac 0
  • Make `TimeRanges` and `WeekRange` behave more like native collections

    Make `TimeRanges` and `WeekRange` behave more like native collections

    TimeRanges could behave like a list, and WeekRange like a dict.

    https://docs.python.org/3/reference/datamodel.html#emulating-container-types

    • [ ] __bool__
    enhancement 
    opened by MicaelJarniac 1
  • Compare multiple times at once

    Compare multiple times at once

    assert (time(...), time(...)) in TimeRange(...)
    assert (time(...), time(...)) in TimeRanges(...)
    assert (datetime(...), datetime(...)) in WeekRange(...)
    
    enhancement 
    opened by MicaelJarniac 0
Releases(v1.0.2)
Owner
Micael Jarniac
Micael Jarniac
Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Teo Calvo 5 Apr 26, 2022
Pipetools enables function composition similar to using Unix pipes.

Pipetools Complete documentation pipetools enables function composition similar to using Unix pipes. It allows forward-composition and piping of arbit

186 Dec 29, 2022
Probabilistic reasoning and statistical analysis in TensorFlow

TensorFlow Probability TensorFlow Probability is a library for probabilistic reasoning and statistical analysis in TensorFlow. As part of the TensorFl

3.8k Jan 05, 2023
WithPipe is a simple utility for functional piping in Python.

A utility for functional piping in Python that allows you to access any function in any scope as a partial.

Michael Milton 1 Oct 26, 2021
This is an analysis and prediction project for house prices in King County, USA based on certain features of the house

This is a project for analysis and estimation of House Prices in King County USA The .csv file contains the data of the house and the .ipynb file con

Amit Prakash 1 Jan 21, 2022
A set of tools to analyse the output from TraDIS analyses

QuaTradis (Quadram TraDis) A set of tools to analyse the output from TraDIS analyses Contents Introduction Installation Required dependencies Bioconda

Quadram Institute Bioscience 2 Feb 16, 2022
Office365 (Microsoft365) audit log analysis tool

Office365 (Microsoft365) audit log analysis tool The header describes it all WHY?? The first line of code was written long time before other colleague

Anatoly 1 Jul 27, 2022
Cleaning and analysing aggregated UK political polling data.

Analysing aggregated UK polling data The tweet collection & storage pipeline used in email-service is used to also collect tweets from @britainelects.

Ajay Pethani 0 Dec 22, 2021
A Python and R autograding solution

Otter-Grader Otter Grader is a light-weight, modular open-source autograder developed by the Data Science Education Program at UC Berkeley. It is desi

Infrastructure Team 93 Jan 03, 2023
Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

2 Nov 20, 2021
A fast, flexible, and performant feature selection package for python.

linselect A fast, flexible, and performant feature selection package for python. Package in a nutshell It's built on stepwise linear regression When p

88 Dec 06, 2022
Project: Netflix Data Analysis and Visualization with Python

Project: Netflix Data Analysis and Visualization with Python Table of Contents General Info Installation Demo Usage and Main Functionalities Contribut

Kathrin Hälbich 2 Feb 13, 2022
Utilize data analytics skills to solve real-world business problems using Humana’s big data

Humana-Mays-2021-HealthCare-Analytics-Case-Competition- The goal of the project is to utilize data analytics skills to solve real-world business probl

Yongxian (Caroline) Lun 1 Dec 27, 2021
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
CS50 pset9: Using flask API to create a web application to exchange stocks' shares.

C$50 Finance In this guide we want to implement a website via which users can “register”, “login” “buy” and “sell” stocks, like below: Background If y

1 Jan 24, 2022
A utility for functional piping in Python that allows you to access any function in any scope as a partial.

WithPartial Introduction WithPartial is a simple utility for functional piping in Python. The package exposes a context manager (used with with) calle

Michael Milton 1 Oct 26, 2021
Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

1 Feb 11, 2022
Template for a Dataflow Flex Template in Python

Dataflow Flex Template in Python This repository contains a template for a Dataflow Flex Template written in Python that can easily be used to build D

STOIX 5 Apr 28, 2022
Desafio 1 ~ Bantotal

Challenge 01 | Bantotal Please read the instructions for the challenge by selecting your preferred language below: Español Português License Copyright

Maratona Behind the Code 44 Sep 28, 2022
BAyesian Model-Building Interface (Bambi) in Python.

Bambi BAyesian Model-Building Interface in Python Overview Bambi is a high-level Bayesian model-building interface written in Python. It's built on to

861 Dec 29, 2022