A fast, flexible, and performant feature selection package for python.

Overview

linselect

A fast, flexible, and performant feature selection package for python.

Package in a nutshell

It's built on stepwise linear regression

When passed data, the underlying algorithm seeks minimal variable subsets that produce good linear fits to the targets. This approach to feature selection strikes a competitive balance between performance, speed, and memory efficiency.

It has a simple API

A simple API makes it easy to quickly rank a data set's features in terms of their added value to a given fit. This is demoed below, where we learn that we can drop column 1 of X and still obtain a fit to y that captures 97.37% of its variance.

from linselect import FwdSelect
import numpy as np

X = np.array([[1,2,4], [1,1,2], [3,2,1], [10,2,2]])
y = np.array([[1], [-1], [-1], [1]])

selector = FwdSelect()
selector.fit(X, y)

print selector.ordered_features
print selector.ordered_cods
# [2, 0, 1]
# [0.47368422, 0.97368419, 1.0]

X_compressed = X[:, selector.ordered_features[:2]]

It's fast

A full sweep on a 1000 feature count data set runs in 10s on my laptop -- about one million times faster (seriously) than standard stepwise algorithms, which are effectively too slow to run at this scale. A 100 count feature set runs in 0.07s.

from linselect import FwdSelect
import numpy as np
import time

X = np.random.randn(5000, 1000)
y = np.random.randn(5000, 1)

selector = FwdSelect()

t1 = time.time()
selector.fit(X, y)
t2 = time.time()
print t2 - t1
# 9.87492

Its scores reveal your effective feature count

By plotting fitted CODs against ranked feature count, one often learns that seemingly high-dimensional problems can actually be understood using only a minority of the available features. The plot below demonstrates this: A fit to one year of AAPL's stock fluctuations -- using just 3 selected stocks as predictors -- nearly matches the performance of a 49-feature fit. The 3-feature fit arguably provides more insight and is certainly easier to reason about (cf. tutorials for details).

apple stock plot

It's flexible

linselect exposes multiple applications of the underlying algorithm. These allow for:

  • Forward, reverse, and general forward-reverse stepwise regression strategies.
  • Supervised applications aimed at a single target variable or simultaneous prediction of multiple target variables.
  • Unsupervised applications. The algorithm can be applied to identify minimal, representative subsets of an available column set. This provides a feature selection analog of PCA -- importantly, one that retains interpretability.

Under the hood

Feature selection algorithms are used to seek minimal column / feature subsets that capture the majority of the useful information contained within a data set. Removal of a selected subset's complement -- the relatively uninformative or redundant features -- can often result in a significant data compression and improved interpretability.

Stepwise selection algorithms work by iteratively updating a model feature set, one at a time [1]. For example, in a given step of a forward process, one considers all of the features that have not yet been added to the model, and then identifies that which would improve the model the most. This is added, and the process is then repeated until all features have been selected. The features that are added first in this way tend to be those that are predictive and also not redundant with those already included in the predictor set. Retaining only these first selected features therefore provides a convenient method for identifying minimal, informative feature subsets.

In general, identifying the optimal feature to add to a model in a given step requires building and scoring each possible updated model variant. This results in a slow process: If there are n features, O(n^2) models must be built to carry out a full ranking. However, the process can be dramatically sped up in the case of linear regression -- thanks to some linear algebra identities that allow one to efficiently update these models as features are either added or removed from their predictor sets [2,3]. Using these update rules, a full feature ranking can be carried out in roughly the same amount of time that is needed to fit only a single model. For n=1000, this means we get an O(n^2) = O(10^6) speed up! linselect makes use of these update rules -- first identified in [2] -- allowing for fast feature selection sweeps.

[1] Introduction to Statistical Learning by G. James, et al -- cf. chapter 6.

[2] M. Efroymson. Multiple regression analysis. Mathematical methods for digital computers, 1:191–203, 1960.

[3] J. Landy. Stepwise regression for unsupervised learning, 2017. arxiv.1706.03265.

Classes, documentation, tests, license

linselect contains three classes: FwdSelect, RevSelect, and GenSelect. As the names imply, these support efficient forward, reverse, and general forward-reverse search protocols, respectively. Each can be used for both supervised and unsupervised analyses.

Docstrings and basic call examples are illustrated for each class in the ./docs folder.

An FAQ and a running list of tutorials are available at efavdb.com/linselect.

Tests: From the root directory,

python setup.py test

This project is licensed under the terms of the MIT license.

Installation

The package can be installed using pip, from pypi

pip install linselect

or from github

pip install git+git://github.com/efavdb/linselect.git

Author

Jonathan Landy - EFavDB

Acknowledgments: Special thanks to P. Callier, P. Spanoudes, and R. Zhou for providing helpful feedback.

PySpark bindings for H3, a hierarchical hexagonal geospatial indexing system

h3-pyspark: Uber's H3 Hexagonal Hierarchical Geospatial Indexing System in PySpark PySpark bindings for the H3 core library. For available functions,

Kevin Schaich 12 Dec 24, 2022
An Integrated Experimental Platform for time series data anomaly detection.

Curve Sorry to tell contributors and users. We decided to archive the project temporarily due to the employee work plan of collaborators. There are no

Baidu 486 Dec 21, 2022
Sample code for Harry's Airflow online trainng course

Sample code for Harry's Airflow online trainng course You can find the videos on youtube or bilibili. I am working on adding below things: the slide p

102 Dec 30, 2022
Exploratory Data Analysis for Employee Retention Dataset

Exploratory Data Analysis for Employee Retention Dataset Employee turn-over is a very costly problem for companies. The cost of replacing an employee

kana sudheer reddy 2 Oct 01, 2021
A lightweight interface for reading in output from the Weather Research and Forecasting (WRF) model into xarray Dataset

xwrf A lightweight interface for reading in output from the Weather Research and Forecasting (WRF) model into xarray Dataset. The primary objective of

National Center for Atmospheric Research 43 Nov 29, 2022
An easy-to-use feature store

A feature store is a data storage system for data science and machine-learning. It can store raw data and also transformed features, which can be fed straight into an ML model or training script.

ByteHub AI 48 Dec 09, 2022
Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software era.

Overview docs tests package Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software era

Tensorwerk 193 Nov 29, 2022
💬 Python scripts to parse Messenger, Hangouts, WhatsApp and Telegram chat logs into DataFrames.

Chatistics Python 3 scripts to convert chat logs from various messaging platforms into Pandas DataFrames. Can also generate histograms and word clouds

Florian 893 Jan 02, 2023
ASOUL直播间弹幕抓取&&数据分析

ASOUL直播间弹幕抓取&&数据分析(更新中) 这些文件用于爬取ASOUL直播间的弹幕(其他直播间也可以)和其他信息,以及简单的数据分析生成。

159 Dec 10, 2022
GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors

GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors. GWpy provides a user-f

GWpy 342 Jan 07, 2023
AWS Glue ETL Code Samples

AWS Glue ETL Code Samples This repository has samples that demonstrate various aspects of the new AWS Glue service, as well as various AWS Glue utilit

AWS Samples 1.2k Jan 03, 2023
Stream-Kafka-ELK-Stack - Weather data streaming using Apache Kafka and Elastic Stack.

Streaming Data Pipeline - Kafka + ELK Stack Streaming weather data using Apache Kafka and Elastic Stack. Data source: https://openweathermap.org/api O

Felipe Demenech Vasconcelos 2 Jan 20, 2022
Pyspark project that able to do joins on the spark data frames.

SPARK JOINS This project is to perform inner, all outer joins and semi joins. create_df.py: load_data.py : helps to put data into Spark data frames. d

Joshua 1 Dec 14, 2021
Yet Another Workflow Parser for SecurityHub

YAWPS Yet Another Workflow Parser for SecurityHub "Screaming pepper" by Rum Bucolic Ape is licensed with CC BY-ND 2.0. To view a copy of this license,

myoung34 8 Dec 22, 2022
Snakemake workflow for converting FASTQ files to self-contained CRAM files with maximum lossless compression.

Snakemake workflow: name A Snakemake workflow for description Usage The usage of this workflow is described in the Snakemake Workflow Catalog. If

Algorithms for reproducible bioinformatics (Koesterlab) 1 Dec 16, 2021
DaCe is a parallel programming framework that takes code in Python/NumPy and other programming languages

aCe - Data-Centric Parallel Programming Decoupling domain science from performance optimization. DaCe is a parallel programming framework that takes c

SPCL 330 Dec 30, 2022
Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Binomial Option Pricing Calculator Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required) Background A derivative is a fi

sammuhrai 1 Nov 29, 2021
Calculate multilateral price indices in Python (with Pandas and PySpark).

IndexNumCalc Calculate multilateral price indices using the GEKS-T (CCDI), Time Product Dummy (TPD), Time Dummy Hedonic (TDH), Geary-Khamis (GK) metho

Dr. Usman Kayani 3 Apr 27, 2022
Statistical Analysis 📈 focused on statistical analysis and exploration used on various data sets for personal and professional projects.

Statistical Analysis 📈 This repository focuses on statistical analysis and the exploration used on various data sets for personal and professional pr

Andy Pham 1 Sep 03, 2022
The Spark Challenge Student Check-In/Out Tracking Script

The Spark Challenge Student Check-In/Out Tracking Script This Python Script uses the Student ID Database to match the entries with the ID Card Swipe a

1 Dec 09, 2021