An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify.

Overview

Data Warehouse on AWS Redshift

ETL Pipeline in AWS Redshift and S3

Project Summary

In this project, I have built an ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify. The ETL process flows from AWS's S3 into staging tables in AWS Redshift.

I then query the staged data into analytics tables. This will help Sparkify's analytics team get quicker insights about its customer base.

File Descriptions

create_tables.py

create fact and dimension tables for the star schema in Redshift.

sql_queries.py

define SQL statements, which will then be imported into the other files.

etl.py

load data from S3 into staging tables on Redshift, and then process that data into analytics tables on Redshift.

Design Decisions

Keyspace Star Schema

The star schema is used, with a fact table centered around dimension tables at its periphery.

Fact table: songplays -- every occurrence of a song being played is stored here.

Dimension tables:

  • users -- the users of the Sparkify music streaming app

  • songs -- the songs in Sparkify's music catalog

  • artists -- the artists who record the catalog's songs

  • time -- the timestamps of records in songplays, broken down into specific date and time units (year, day, hour, etc.)

Run Instructions

  1. Clone this repository, which will place the 3 .py files and the .cfg file into the same directory.

  2. Duplicate the dwh_template.cfg file to create a new file named dwh.cfg. Because this will contain private login credentials, be sure it is added to the .gitignore file.

  3. Fill in the [CLUSTER] and [IAM_ROLE] attributes from AWS, according to the IAM role and Redshift cluster already created. Please consult AWS's well-documented instructions as necessary.

  4. Run python create_tables.py to set up the Redshift data warehouse cluster.

  5. Run python etl.py. This will copy the 2 large tables from S3 into staging tables. After that, this will also populate the smaller dimension tables.

Data processing with Pandas.

Processing-data-with-python This is a simple example showing how to use Pandas to create a dataframe and the processing data with python. The jupyter

1 Jan 23, 2022
A Big Data ETL project in PySpark on the historical NYC Taxi Rides data

Processing NYC Taxi Data using PySpark ETL pipeline Description This is an project to extract, transform, and load large amount of data from NYC Taxi

Unnikrishnan 2 Dec 12, 2021
Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Débora Mendes de Azevedo 1 Feb 03, 2022
A meta plugin for processing timelapse data timepoint by timepoint in napari

napari-time-slicer A meta plugin for processing timelapse data timepoint by timepoint. It enables a list of napari plugins to process 2D+t or 3D+t dat

Robert Haase 2 Oct 13, 2022
Aggregating gridded data (xarray) to polygons

A package to aggregate gridded data in xarray to polygons in geopandas using area-weighting from the relative area overlaps between pixels and polygons. Check out the binder link above for a sample c

Kevin Schwarzwald 42 Nov 09, 2022
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data

tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)

136 Dec 22, 2022
pandas: powerful Python data analysis toolkit

pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive.

pandas 36.4k Jan 03, 2023
Containerized Demo of Apache Spark MLlib on a Data Lakehouse (2022)

Spark-DeltaLake-Demo Reliable, Scalable Machine Learning (2022) This project was completed in an attempt to become better acquainted with the latest b

8 Mar 21, 2022
Kennedy Institute of Rheumatology University of Oxford Project November 2019

TradingBot6M Kennedy Institute of Rheumatology University of Oxford Project November 2019 Run Change api.txt to binance api key: https://www.binance.c

Kannan SAR 2 Nov 16, 2021
CS50 pset9: Using flask API to create a web application to exchange stocks' shares.

C$50 Finance In this guide we want to implement a website via which users can “register”, “login” “buy” and “sell” stocks, like below: Background If y

1 Jan 24, 2022
Package for decomposing EMG signals into motor unit firings, as used in Formento et al 2021.

EMGDecomp Package for decomposing EMG signals into motor unit firings, created for Formento et al 2021. Based heavily on Negro et al, 2016. Supports G

13 Nov 01, 2022
Employee Turnover Analysis

Employee Turnover Analysis Submission to the DataCamp competition "Can you help reduce employee turnover?"

Jannik Wiedenhaupt 1 Feb 13, 2022
CRISP: Critical Path Analysis of Microservice Traces

CRISP: Critical Path Analysis of Microservice Traces This repo contains code to compute and present critical path summary from Jaeger microservice tra

Uber Research 110 Jan 06, 2023
Senator Trades Monitor

Senator Trades Monitor This monitor will grab the most recent trades by senators and send them as a webhook to discord. Installation To use the monito

Yousaf Cheema 5 Jun 11, 2022
Python script to automate the plotting and analysis of percentage depth dose and dose profile simulations in TOPAS.

topas-create-graphs A script to automatically plot the results of a topas simulation Works for percentage depth dose (pdd) and dose profiles (dp). Dep

Sebastian Schäfer 10 Dec 08, 2022
A Python and R autograding solution

Otter-Grader Otter Grader is a light-weight, modular open-source autograder developed by the Data Science Education Program at UC Berkeley. It is desi

Infrastructure Team 93 Jan 03, 2023
Dbt-core - dbt enables data analysts and engineers to transform their data using the same practices that software engineers use to build applications.

Dbt-core - dbt enables data analysts and engineers to transform their data using the same practices that software engineers use to build applications.

dbt Labs 6.3k Jan 08, 2023
A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 1.6k Dec 29, 2022
Probabilistic reasoning and statistical analysis in TensorFlow

TensorFlow Probability TensorFlow Probability is a library for probabilistic reasoning and statistical analysis in TensorFlow. As part of the TensorFl

3.8k Jan 05, 2023
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022