An easy-to-use feature store

Overview

ByteHub PyPI Latest Release Issues Issues Code style: black

ByteHub logo

An easy-to-use feature store.

💾 What is a feature store?

A feature store is a data storage system for data science and machine-learning. It can store raw data and also transformed features, which can be fed straight into an ML model or training script.

Feature stores allow data scientists and engineers to be more productive by organising the flow of data into models.

The Bytehub Feature Store is designed to:

  • Be simple to use, with a Pandas-like API;
  • Require no complicated infrastructure, running on a local Python installation or in a cloud environment;
  • Be optimised towards timeseries operations, making it highly suited to applications such as those in finance, energy, forecasting; and
  • Support simple time/value data as well as complex structures, e.g. dictionaries.

It is built on Dask to support large datasets and cluster compute environments.

🦉 Features

  • Searchable feature information and metadata can be stored locally using SQLite or in a remote database.
  • Timeseries data is saved in Parquet format using Dask, making it readable from a wide range of other tools. Data can reside either on a local filesystem or in a cloud storage service, e.g. AWS S3.
  • Supports timeseries joins, along with filtering and resampling operations to make it easy to load and prepare datasets for ML training.
  • Feature engineering steps can be implemented as transforms. These are saved within the feature store, and allows for simple, resusable preparation of raw data.
  • Time travel can retrieve feature values based on when they were created, which can be useful for forecasting applications.
  • Simple APIs to retrieve timeseries dataframes for training, or a dictionary of the most recent feature values, which can be used for inference.

Also available as ☁️ ByteHub Cloud: a ready-to-use, cloud-hosted feature store.

📖 Documentation and tutorials

See the ByteHub documentation and notebook tutorials to learn more and get started.

🚀 Quick-start

Install using pip:

pip install bytehub

Create a local SQLite feature store by running:

import bytehub as bh
import pandas as pd

fs = bh.FeatureStore()

Data lives inside namespaces within each feature store. They can be used to separate projects or environments. Create a namespace as follows:

fs.create_namespace(
    'tutorial', url='/tmp/featurestore/tutorial', description='Tutorial datasets'
)

Create a feature inside this namespace which will be used to store a timeseries of pre-prepared data:

fs.create_feature('tutorial/numbers', description='Timeseries of numbers')

Now save some data into the feature store:

dts = pd.date_range('2020-01-01', '2021-02-09')
df = pd.DataFrame({'time': dts, 'value': list(range(len(dts)))})

fs.save_dataframe(df, 'tutorial/numbers')

The data is now stored, ready to be transformed, resampled, merged with other data, and fed to machine-learning models.

We can engineer new features from existing ones using the transform decorator. Suppose we want to define a new feature that contains the squared values of tutorial/numbers:

@fs.transform('tutorial/squared', from_features=['tutorial/numbers'])
def squared_numbers(df):
    # This transform function receives dataframe input, and defines a transform operation
    return df ** 2 # Square the input

Now both features are saved in the feature store, and can be queried using:

df_query = fs.load_dataframe(
    ['tutorial/numbers', 'tutorial/squared'],
    from_date='2021-01-01', to_date='2021-01-31'
)

To connect to ByteHub Cloud, first register for an account, then use:

fs = bh.FeatureStore("https://api.bytehub.ai")

This will allow you to store features in your own private namespace on ByteHub Cloud, and save datasets to an AWS S3 storage bucket.

🐾 Roadmap

  • Tasks to automate updates to features using orchestration tools like Airflow
Owner
ByteHub AI
ByteHub AI
MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020]

MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020] by Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang, Wa

112 Dec 28, 2022
Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen 3.7k Jan 03, 2023
This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

1 Dec 28, 2021
The Spark Challenge Student Check-In/Out Tracking Script

The Spark Challenge Student Check-In/Out Tracking Script This Python Script uses the Student ID Database to match the entries with the ID Card Swipe a

1 Dec 09, 2021
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Implementation in Python of the reliability measures such as Omega.

reliabiliPy Summary Simple implementation in Python of the [reliability](https://en.wikipedia.org/wiki/Reliability_(statistics) measures for surveys:

Rafael Valero Fernández 2 Apr 27, 2022
Python ELT Studio, an application for building ELT (and ETL) data flows.

The Python Extract, Load, Transform Studio is an application for performing ELT (and ETL) tasks. Under the hood the application consists of a two parts.

Schlerp 55 Nov 18, 2022
A neural-based binary analysis tool

A neural-based binary analysis tool Introduction This directory contains the demo of a neural-based binary analysis tool. We test the framework using

Facebook Research 208 Dec 22, 2022
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

48 Dec 21, 2022
Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Binomial Option Pricing Calculator Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required) Background A derivative is a fi

sammuhrai 1 Nov 29, 2021
ICLR 2022 Paper submission trend analysis

Visualize ICLR 2022 OpenReview Data

Jintang Li 75 Dec 06, 2022
First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we want to understand column level lineage and automate impact analysis.

dbt-osmosis First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we wan

Alexander Butler 150 Jan 06, 2023
Generate lookml for views from dbt models

dbt2looker Use dbt2looker to generate Looker view files automatically from dbt models. Features Column descriptions synced to looker Dimension for eac

lightdash 126 Dec 28, 2022
pandas: powerful Python data analysis toolkit

pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive.

pandas 36.4k Jan 03, 2023
Catalogue data - A Python Scripts to prepare catalogue data

catalogue_data Scripts to prepare catalogue data. Setup Clone this repo. Install

BigScience Workshop 3 Mar 03, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
Pyspark Spotify ETL

This is my first Data Engineering project, it extracts data from the user's recently played tracks using Spotify's API, transforms data and then loads it into Postgresql using SQLAlchemy engine. Data

16 Jun 09, 2022
WAL enables programmable waveform analysis.

This repro introcudes the Waveform Analysis Language (WAL). The initial paper on WAL will appear at ASPDAC'22 and can be downloaded here: https://www.

Institute for Complex Systems (ICS), Johannes Kepler University Linz 40 Dec 13, 2022
Used for data processing in machine learning, and help us to construct ML model more easily from scratch

Used for data processing in machine learning, and help us to construct ML model more easily from scratch. Can be used in linear model, logistic regression model, and decision tree.

ShawnWang 0 Jul 05, 2022
PrimaryBid - Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift

Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift This project is composed of two parts: Part1 and Part2

Emmanuel Boateng Sifah 1 Jan 19, 2022