Repositori untuk menyimpan material Long Course STMKGxHMGI tentang Geophysical Python for Seismic Data Analysis

Overview

header_image

Long Course

"Geophysical Python for Seismic Data Analysis"

Instruktur: Dr.rer.nat. Wiwit Suryanto, M.Si

Dipersiapkan oleh: Anang Sahroni

Waktu:

Sesi 1: 18 September 2021

Sesi 2: 25 September 2021

Tempat: Zoom Meeting

Agenda: Memberikan wawasan kepada mahasiswa Geofisika dalam pengolahan data Geofisika: pemrosesan data seismik menggunakan python.

Luaran

  1. Peserta dapat melakukan instalasi Python
  2. Peserta dapat membuat dan menggunakan Jupyter Notebook
  3. Peserta dapat membaca, memfilter, dan mengeplot peta dan statistik gempa bumi menggunakan modul umum Python seperti numpy, scipy, dan matplotlib
  4. Peserta dapat menentukan parameter gempa menggunakan metode yang sederhana pada Python memanfaatkan modul seismologi seperti obspy

Peralatan untuk peserta

Laptop ataupun Personal Computer (PC) yang terkoneksi dengan internet.
Jika hendak menjalankan kode tanpa instalasi bisa melalui: Binder

Data:

  1. Katalog Gempa Bumi Badan Meteorologi Klimatologi dan Geofisika (BMKG)
  2. Titik-titik Stasiun untuk berbagai jaringan seismometer

Jadwal

Topik
PRESESI: 17 September 2021
Instalasi Python dalam Miniconda atau PDF
1. Instalasi Miniconda pada Windows, Linux, ataupun MacOS
2. Menjalankan Python Console melalui Anaconda Prompt
3. Menulis kode dalam editor (Integrated Development Environment/IDE) kode dan menjalankannya melalui Anaconda Prompt
4. Pengenalan IDE dan beberapa contohnya
5. Menginstall pandas, numpy, matplotlib, scipy, Cartopy, dan notebook menggunakan Anaconda Prompt pada virtual environment
6. Menjalankan kode sederhana di Jupyter Notebook
7. Memanggil fungsi bawaan python (math), mencoba, dan memanggil bantuan (help) untuk masing-masing fungsi
8. Memberikan catatan dan gambar dalam bentuk Markdown di Jupyter Notebook
9. Menyimpan notebook pada repositori Github dan menambahkan ke Binder
10. Mengupdate notebook dan melakukan commit ke repositori
EXERCISE: Membuat panduan instalasi Miniconda pada Jupyter Notebook dan menambahkannya di repositori Github individu.
SESI 1: 18 September 2021
Introduction to geophysical programming using python: basic python for seismology Materi 1 (PDF/Open In Colab) dan Materi 2 (PDF/Open In Colab) atau Binder
1. Membaca data katalog menggunakan pandas
2. Membedakan jenis-jenis data antar kolom pada katalog (String, Integer, dan Float)
3. Mengambil salah satu kolom ke dalam bentuk List dan mempelajari metode-metode pada List (indexing, slicing, append, dan lain sebagainya)
4. Menggunakan for loop untuk mengkonversi format String menjadi datetime untuk waktu kejadian
5. Menggunakan conditional untuk memfilter katalog berdasarkan besar magnitudo atau waktu
6. Membuat fungsi untuk memfilter katalog berdasarkan kedalaman dan menyimpannya menjadi modul siap impor
7. Membuat plot magnitudo dengan jumlah kejadian dan waktu kejadian (dapat berupa G-R Plot atau plot sederhana)
8. Mengkombinasikan List latitude dan longitude untuk mengeplot episenter
9. Mengintegrasikan kolom magnitude untuk membedakan ukuran titik titik plot
10. Mengintegrasikan kolom kedalaman untuk membedakan warna titik plot
11. Menambahkan basemap pada plot Menggunakan Cartopy
EXERCISE: Membaca file titik stasiun, memfilter berdasarkan network, dan mengeplotnya bersama dengan titik-titik gempa.
SESI 2: 25 September 2021
Source Mechanism and processing seismic data with python : Determine earthquake epicenter, hypocenter, and type of P Wave
Jika menggunakan komputer lokal silahkan install modul yang dibutuhkan pada sesi dua dengan cara: conda install -c conda-forge xarray rasterio tqdm
1. Menentukan episenter dengan metode lingkaran Materi
2. Menentukan hiposenter dengan metode Geiger dan probabilistik Materi 1, Materi 2
3. Pengenalan pengolahan waveform dengan obspy Materi

Software untuk diinstall

  1. Miniconda. Instalasi Python akan dilakukan menggunakan Anaconda Distribution dalam bentuk lite yaitu Miniconda. Dengan Miniconda instalasi paket atau modul pendukung untuk Python akan lebih mudah dan tertata. Unduh installer Miniconda, pilih untuk versi Python 3.8.
  2. Editor teks agar penulisan kode lebih mudah karena biasanya sudah disertai pewarnaan kode (syntax highlighting) dan indentasi otomatis. Editor teks dapat menggunakan Notepad++, SublimeText, atau menggunakan IDE yang lebih kompleks seperti PyCharm dan Visual Studio Code.

Software-software yang dibutuhkan tersebut sudah harus diinstall sebelum proses pemberian materi dimulai karena ukurannya cukup besar.

Akun Github

Peserta workshop dianjurkan mendaftarkan akun GitHub melalui Daftar Github

Bacaan Tambahan:

Peserta dapat belajar pada Lesson di Software Carpentry dengan materi yang mendalam dan metode yang sama yaitu learning by doing.

Referensi

Panduan ini disusun terinspirasi dari materi pada Software Carpentry, materi inversi hiposenter probabilistik Igel & Geßele di Seismo Live,panduan workshop Leonardo Uieda pada repositori, serta Lisa Itauxe Python for ES Student berikut ini.

You might also like...
Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.
Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

 A data analysis using python and pandas to showcase trends in school performance.
A data analysis using python and pandas to showcase trends in school performance.

A data analysis using python and pandas to showcase trends in school performance. A data analysis to showcase trends in school performance using Panda

A collection of learning outcomes data analysis using Python and SQL, from DQLab.
A collection of learning outcomes data analysis using Python and SQL, from DQLab.

Data Analyst with PYTHON Data Analyst berperan dalam menghasilkan analisa data serta mempresentasikan insight untuk membantu proses pengambilan keputu

DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis.
DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis.

DaDRA (day-druh) is a Python library for Data-Driven Reachability Analysis. The main goal of the package is to accelerate the process of computing estimates of forward reachable sets for nonlinear dynamical systems.

Python-based Space Physics Environment Data Analysis Software

pySPEDAS pySPEDAS is an implementation of the SPEDAS framework for Python. The Space Physics Environment Data Analysis Software (SPEDAS) framework is

Python Project on Pro Data Analysis Track

Udacity-BikeShare-Project: Python Project on Pro Data Analysis Track Basic Data Exploration with pandas on Bikeshare Data Basic Udacity project using

Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python
Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python

Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python This project is a good starting point for those who have little

 Project under the certification
Project under the certification "Data Analysis with Python" on FreeCodeCamp

Sea Level Predictor Assignment You will anaylize a dataset of the global average sea level change since 1880. You will use the data to predict the sea

Larch: Applications and Python Library for Data Analysis of X-ray Absorption Spectroscopy (XAS, XANES, XAFS, EXAFS), X-ray Fluorescence (XRF) Spectroscopy and Imaging

Larch: Data Analysis Tools for X-ray Spectroscopy and More Documentation: http://xraypy.github.io/xraylarch Code: http://github.com/xraypy/xraylarch L

Releases(v1.0.0)
Owner
Anang Sahroni
newbie/amateur
Anang Sahroni
Automated Exploration Data Analysis on a financial dataset

Automated EDA on financial dataset Just a simple way to get automated Exploration Data Analysis from financial dataset (OHLCV) using Streamlit and ta.

Darío López Padial 28 Nov 27, 2022
The official repository for ROOT: analyzing, storing and visualizing big data, scientifically

About The ROOT system provides a set of OO frameworks with all the functionality needed to handle and analyze large amounts of data in a very efficien

ROOT 2k Dec 29, 2022
A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

TennisBusinessIntelligenceProject - A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

carlo paladino 1 Jan 02, 2022
Conduits - A Declarative Pipelining Tool For Pandas

Conduits - A Declarative Pipelining Tool For Pandas Traditional tools for declaring pipelines in Python suck. They are mostly imperative, and can some

Kale Miller 7 Nov 21, 2021
Projects that implement various aspects of Data Engineering.

DATAWAREHOUSE ON AWS The purpose of this project is to build a datawarehouse to accomodate data of active user activity for music streaming applicatio

2 Oct 14, 2021
pipeline for migrating lichess data into postgresql

How Long Does It Take Ordinary People To "Get Good" At Chess? TL;DR: According to 5.5 years of data from 2.3 million players and 450 million games, mo

Joseph Wong 182 Nov 11, 2022
Scraping and analysis of leetcode-compensations page.

Leetcode compensations report Scraping and analysis of leetcode-compensations page.

utsav 96 Jan 01, 2023
A collection of learning outcomes data analysis using Python and SQL, from DQLab.

Data Analyst with PYTHON Data Analyst berperan dalam menghasilkan analisa data serta mempresentasikan insight untuk membantu proses pengambilan keputu

6 Oct 11, 2022
Pypeln is a simple yet powerful Python library for creating concurrent data pipelines.

Pypeln Pypeln (pronounced as "pypeline") is a simple yet powerful Python library for creating concurrent data pipelines. Main Features Simple: Pypeln

Cristian Garcia 1.4k Dec 31, 2022
PostQF is a user-friendly Postfix queue data filter which operates on data produced by postqueue -j.

PostQF Copyright © 2022 Ralph Seichter PostQF is a user-friendly Postfix queue data filter which operates on data produced by postqueue -j. See the ma

Ralph Seichter 11 Nov 24, 2022
Code for the DH project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval Muslim World"

Damast This repository contains code developed for the digital humanities project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval

University of Stuttgart Visualization Research Center 2 Jul 01, 2022
cLoops2: full stack analysis tool for chromatin interactions

cLoops2: full stack analysis tool for chromatin interactions Introduction cLoops2 is an extension of our previous work, cLoops. From loop-calling base

YaqiangCao 25 Dec 14, 2022
Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

HoloViz 2.9k Jan 06, 2023
Basis Set Format Converter

Basis Set Format Converter Repository for the online tool that allows you to enter a basis set in the form of text input for a variety of Quantum Chem

Manas Sharma 3 Jun 27, 2022
BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings.

BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings. it also can assist the binary code analysis rese

BinTuner 42 Dec 16, 2022
Produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

Amber Electric Usage Summary This is a command line tool that produces a summary CSV report of an Amber Electric customer's energy consumption and cos

Graham Lea 12 May 26, 2022
Performance analysis of predictive (alpha) stock factors

Alphalens Alphalens is a Python Library for performance analysis of predictive (alpha) stock factors. Alphalens works great with the Zipline open sour

Quantopian, Inc. 2.5k Jan 09, 2023
Python-based Space Physics Environment Data Analysis Software

pySPEDAS pySPEDAS is an implementation of the SPEDAS framework for Python. The Space Physics Environment Data Analysis Software (SPEDAS) framework is

SPEDAS 98 Dec 22, 2022
An experimental project I'm undertaking for the sole purpose of increasing my Python knowledge

5ePy is an experimental project I'm undertaking for the sole purpose of increasing my Python knowledge. #Goals Goal: Create a working, albeit lightwei

Hayden Covington 1 Nov 24, 2021
Stochastic Gradient Trees implementation in Python

Stochastic Gradient Trees - Python Stochastic Gradient Trees1 by Henry Gouk, Bernhard Pfahringer, and Eibe Frank implementation in Python. Based on th

John Koumentis 2 Nov 18, 2022