WaveFake: A Data Set to Facilitate Audio DeepFake Detection

Related tags

Data AnalysisWaveFake
Overview

WaveFake: A Data Set to Facilitate Audio DeepFake Detection

logo

This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper WaveFake.

Deep generative modeling has the potential to cause significant harm to society. Recognizing this threat, a magnitude of research into detecting so-called "Deepfakes" has emerged. This research most often focuses on the image domain, while studies exploring generated audio signals have - so far - been neglected. In this paper, we aim to narrow this gap. We present a novel data set, for which we collected ten sample sets from six different network architectures, spanning two languages. We analyze the frequency statistics comprehensively, discovering subtle differences between the architectures, specifically among the higher frequencies. Additionally, to facilitate further development of detection methods, we implemented three different classifiers adopted from the signal processing community to give practitioners a baseline to compare against. In a first evaluation, we already discovered significant trade-offs between the different approaches. Neural network-based approaches performed better on average, but more traditional models proved to be more robust.

Dataset & Pre-trained Models

You can find our dataset on zenodo and we also provide pre-trained models.

Setup

You can install all needed dependencies by running:

pip install -r requirements.txt

RawNet2 Model

For consistency, we use the RawNet2 model provided by the ASVSpoof 2021 challenge. Please download the model specifications here and place it under dfadetect/models as raw_net2.py.

Statistics & Plots

To recreate the plots/statistics of the paper, use:

python statistics.py -h

usage: statistics.py [-h] [--amount AMOUNT] [--no-stats] [DATASETS ...]

positional arguments:
  DATASETS              Path to datasets. The first entry is assumed to be the referrence one. Specified as follows <path,name>

optional arguments:
  -h, --help            show this help message and exit
  --amount AMOUNT, -a AMOUNT
                        Amount of files to concider.
  --no-stats, -s        Do not compute stats, only plots.

Example

python statistics.py /path/to/reference/data,ReferenceDataName /path/to/generated/data,GeneratedDataName -a 10000

Training models

You can use the training script as follows:

python train_models.py -h

usage: train_models.py [-h] [--amount AMOUNT] [--clusters CLUSTERS] [--batch_size BATCH_SIZE] [--epochs EPOCHS] [--retraining RETRAINING] [--ckpt CKPT] [--use_em] [--raw_net] [--cuda] [--lfcc] [--debug] [--verbose] REAL FAKE

positional arguments:
  REAL                  Directory containing real data.
  FAKE                  Directory containing fake data.

optional arguments:
  -h, --help            show this help message and exit
  --amount AMOUNT, -a AMOUNT
                        Amount of files to load from each directory (default: None - all).
  --clusters CLUSTERS, -k CLUSTERS
                        The amount of clusters to learn (default: 128).
  --batch_size BATCH_SIZE, -b BATCH_SIZE
                        Batch size (default: 8).
  --epochs EPOCHS, -e EPOCHS
                        Epochs (default: 5).
  --retraining RETRAINING, -r RETRAINING
                        Retraining tries (default: 10).
  --ckpt CKPT           Checkpoint directory (default: trained_models).
  --use_em              Use EM version?
  --raw_net             Train raw net version?
  --cuda, -c            Use cuda?
  --lfcc, -l            Use LFCC instead of MFCC?
  --debug, -d           Only use minimal amount of files?
  --verbose, -v         Display debug information?

Example

To train all EM-GMMs use:

python train_models.py /data/LJSpeech-1.1/wavs /data/generated_audio -k 128 -v --use_em --epochs 100

Evaluation

For evaluation you can use the evaluate_models script:

python evaluate_models.p -h

usage: evaluate_models.py [-h] [--output OUTPUT] [--clusters CLUSTERS] [--amount AMOUNT] [--raw_net] [--debug] [--cuda] REAL FAKE MODELS

positional arguments:
  REAL                  Directory containing real data.
  FAKE                  Directory containing fake data.
  MODELS                Directory containing model checkpoints.

optional arguments:
  -h, --help            show this help message and exit
  --output OUTPUT, -o OUTPUT
                        Output file name.
  --clusters CLUSTERS, -k CLUSTERS
                        The amount of clusters to learn (default: 128).
  --amount AMOUNT, -a AMOUNT
                        Amount of files to load from each directory (default: None - all).
  --raw_net, -r         RawNet models?
  --debug, -d           Only use minimal amount of files?
  --cuda, -c            Use cuda?

Example

python evaluate_models.py /data/LJSpeech-1.1/wavs /data/generated_audio trained_models/lfcc/em

Make sure to move the out-of-distribution models to a seperate directory first!

Attribution

We provide a script to attribute the GMM models:

python attribute.py -h

usage: attribute.py [-h] [--clusters CLUSTERS] [--steps STEPS] [--blur] FILE REAL_MODEL FAKE_MODEL

positional arguments:
  FILE                  Audio sample to attribute.
  REAL_MODEL            Real model to attribute.
  FAKE_MODEL            Fake Model to attribute.

optional arguments:
  -h, --help            show this help message and exit
  --clusters CLUSTERS, -k CLUSTERS
                        The amount of clusters to learn (default: 128).
  --steps STEPS, -m STEPS
                        Amount of steps for integrated gradients.
  --blur, -b            Compute BlurIG instead.

Example

python attribute.py /data/LJSpeech-1.1/wavs/LJ008-0217.wav path/to/real/model.pth path/to/fake/model.pth

BibTeX

When you cite our work feel free to use the following bibtex entry:

@inproceedings{
  frank2021wavefake,
  title={{WaveFake: A Data Set to Facilitate Audio Deepfake Detection}},
  author={Joel Frank and Lea Sch{\"o}nherr},
  booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
  year={2021},
}
Owner
Chair for Sys­tems Se­cu­ri­ty
Chair for Sys­tems Se­cu­ri­ty
Code for the DH project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval Muslim World"

Damast This repository contains code developed for the digital humanities project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval

University of Stuttgart Visualization Research Center 2 Jul 01, 2022
A real data analysis and modeling project - restaurant inspections

A real data analysis and modeling project - restaurant inspections Jafar Pourbemany 9/27/2021 This project represents data analysis and modeling of re

Jafar Pourbemany 2 Aug 21, 2022
Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

1 Feb 11, 2022
Projects that implement various aspects of Data Engineering.

DATAWAREHOUSE ON AWS The purpose of this project is to build a datawarehouse to accomodate data of active user activity for music streaming applicatio

2 Oct 14, 2021
A meta plugin for processing timelapse data timepoint by timepoint in napari

napari-time-slicer A meta plugin for processing timelapse data timepoint by timepoint. It enables a list of napari plugins to process 2D+t or 3D+t dat

Robert Haase 2 Oct 13, 2022
Elementary is an open-source data reliability framework for modern data teams. The first module of the framework is data lineage.

Data lineage made simple, reliable, and automated. Effortlessly track the flow of data, understand dependencies and analyze impact. Features Visualiza

898 Jan 09, 2023
BasstatPL is a package for performing different tabulations and calculations for descriptive statistics.

BasstatPL is a package for performing different tabulations and calculations for descriptive statistics. It provides: Frequency table constr

Angel Chavez 1 Oct 31, 2021
Pyspark Spotify ETL

This is my first Data Engineering project, it extracts data from the user's recently played tracks using Spotify's API, transforms data and then loads it into Postgresql using SQLAlchemy engine. Data

16 Jun 09, 2022
Spectacular AI SDK fuses data from cameras and IMU sensors and outputs an accurate 6-degree-of-freedom pose of a device.

Spectacular AI SDK examples Spectacular AI SDK fuses data from cameras and IMU sensors (accelerometer and gyroscope) and outputs an accurate 6-degree-

Spectacular AI 94 Jan 04, 2023
Project: Netflix Data Analysis and Visualization with Python

Project: Netflix Data Analysis and Visualization with Python Table of Contents General Info Installation Demo Usage and Main Functionalities Contribut

Kathrin Hälbich 2 Feb 13, 2022
Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions.

About Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions. The tool provides rich data and a summary g

9 Nov 16, 2022
CaterApp is a cross platform, remotely data sharing tool created for sharing files in a quick and secured manner.

CaterApp is a cross platform, remotely data sharing tool created for sharing files in a quick and secured manner. It is aimed to integrate this tool with several more features including providing a U

Ravi Prakash 3 Jun 27, 2021
peptides.py is a pure-Python package to compute common descriptors for protein sequences

peptides.py Physicochemical properties and indices for amino-acid sequences. 🗺️ Overview peptides.py is a pure-Python package to compute common descr

Martin Larralde 32 Dec 31, 2022
Cleaning and analysing aggregated UK political polling data.

Analysing aggregated UK polling data The tweet collection & storage pipeline used in email-service is used to also collect tweets from @britainelects.

Ajay Pethani 0 Dec 22, 2021
Tools for analyzing data collected with a custom unity-based VR for insects.

unityvr Tools for analyzing data collected with a custom unity-based VR for insects. Organization: The unityvr package contains the following submodul

Hannah Haberkern 1 Dec 14, 2022
This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics!

COSMETICS GENERATOR This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics! Remember to put the l

ᴅᴊʟᴏʀ3xᴢᴏ 11 Dec 13, 2022
WAL enables programmable waveform analysis.

This repro introcudes the Waveform Analysis Language (WAL). The initial paper on WAL will appear at ASPDAC'22 and can be downloaded here: https://www.

Institute for Complex Systems (ICS), Johannes Kepler University Linz 40 Dec 13, 2022
Python script for transferring data between three drives in two separate stages

Waterlock Waterlock is a Python script meant for incrementally transferring data between three folder locations in two separate stages. It performs ha

David Swanlund 13 Nov 10, 2021
A DSL for data-driven computational pipelines

"Dataflow variables are spectacularly expressive in concurrent programming" Henri E. Bal , Jennifer G. Steiner , Andrew S. Tanenbaum Quick overview Ne

1.9k Jan 03, 2023
Udacity-api-reporting-pipeline - Udacity api reporting pipeline

udacity-api-reporting-pipeline In this exercise, you'll use portions of each of

Fabio Barbazza 1 Feb 15, 2022