CS50 pset9: Using flask API to create a web application to exchange stocks' shares.

Overview

C$50 Finance

In this guide we want to implement a website via which users can “register”, “login” “buy” and “sell” stocks, like below:

Picture of dashboard

Background

If you’re not quite sure what it means to buy and sell stocks (i.e., shares of a company), head here for a tutorial.

We’re about to implement C$50 Finance, a web app via which you can manage portfolios of stocks. Not only will this tool allow us to check real stocks’ actual prices and portfolios’ values, it will also let you buy and sell stocks by querying IEX for stocks’ prices.

Indeed, IEX lets you download stock quotes via their API (application programming interface) using URLs like https://cloud.iexapis.com/stable/stock/nflx/quote?token=API_KEY.

Before getting started on this project, we’ll need to register for an API key in order to be able to query IEX’s data. To do so, follow these steps:

  • Visit iexcloud.io/cloud-login#/register/.
  • Select the “Individual” account type, then enter your email address and a password, and click “Create account”.
  • Once registered, scroll down to “Get started for free” and click “Select Start” to choose the free plan.
  • Once you’ve confirmed your account via a confirmation email, visit (https://iexcloud.io/console/tokens).
  • Copy the key that appears under the Token column (it should begin with pk_).
  • In a terminal window execute:
export API_KEY=value

where value is that (pasted) value, without any space immediately before or after the =. You also may wish to paste that value in a text document somewhere, in case you need it again later.

Install requirements

This guide wrote for Windows Terminal and if you have another OS you may change it.

Before we start, you should clone this GitHub repo and then install the dependencies.

git clone https://github.com/magnooj/CS50-finance.git
cd CS50-fincance
pip install -r requirements.txt

Through the files

Now, we are ready to run and test our project. By running ls you can see these files:

Flask API

The first step in building APIs is to think about the data we want to handle, how we want to handle it and what output we want with our APIs. In our example, we want users can register, log in, log out and buy, sell and qout stocks; Finally, see the history of their transactions.

The main HTML file in our app is layout.html. We created a template that other HTML files cand extend that.

In this example, we create Flask eight routs so that we can serve HTTP traffic on that route.

  • / or index : Is the homepage of our app. If user loged in, it display the user’s current cash balance along with a grand total (i.e., stocks’ total value plus cash). But, if user didn.t log in, it displays the login page.
  • register : It has a form that user can register by filling it.
  • buy : In this route, users can input a stock’s symbol and buy some shares.
  • sell : In this page, users can SELECT from theis stocks’ symbol and sell their shares.
  • qoute : Users can lookup the price each share in a stock’s symbol.
  • history : It displays an HTML table summarizing all of a user’s transactions ever, listing row by row each and every buy and every sell.
  • login and logout : These routes start and terminate user’s session.

Of course there is some files like apology.html that displays the error to the user. You can check other files.

Now, We cheked our files and sqw how our app is working. To run the app, when you are in CS50-finance directory, enter this command in the terminal:

flask run

I hope you enjoyed how to stocks' exchange web application using flask. if you have any comments please do not hesitate to send me an e-mail.

Regards,

Ali Ganjizadeh

Programmatically access the physical and chemical properties of elements in modern periodic table.

API to fetch elements of the periodic table in JSON format. Uses Pandas for dumping .csv data to .json and Flask for API Integration. Deployed on "pyt

the techno hack 3 Oct 23, 2022
pyETT: Python library for Eleven VR Table Tennis data

pyETT: Python library for Eleven VR Table Tennis data Documentation Documentation for pyETT is located at https://pyett.readthedocs.io/. Installation

Tharsis Souza 5 Nov 19, 2022
Sensitivity Analysis Library in Python (Numpy). Contains Sobol, Morris, Fractional Factorial and FAST methods.

Sensitivity Analysis Library (SALib) Python implementations of commonly used sensitivity analysis methods. Useful in systems modeling to calculate the

SALib 663 Jan 05, 2023
A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

TennisBusinessIntelligenceProject - A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

carlo paladino 1 Jan 02, 2022
SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

SNV Pipeline SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

East Genomics 1 Nov 02, 2021
Containerized Demo of Apache Spark MLlib on a Data Lakehouse (2022)

Spark-DeltaLake-Demo Reliable, Scalable Machine Learning (2022) This project was completed in an attempt to become better acquainted with the latest b

8 Mar 21, 2022
WithPipe is a simple utility for functional piping in Python.

A utility for functional piping in Python that allows you to access any function in any scope as a partial.

Michael Milton 1 Oct 26, 2021
A lightweight, hub-and-spoke dashboard for multi-account Data Science projects

A lightweight, hub-and-spoke dashboard for cross-account Data Science Projects Introduction Modern Data Science environments often involve many indepe

AWS Samples 3 Oct 30, 2021
A set of procedures that can realize covid19 virus detection based on blood.

A set of procedures that can realize covid19 virus detection based on blood.

Nuyoah-xlh 3 Mar 07, 2022
Snakemake workflow for converting FASTQ files to self-contained CRAM files with maximum lossless compression.

Snakemake workflow: name A Snakemake workflow for description Usage The usage of this workflow is described in the Snakemake Workflow Catalog. If

Algorithms for reproducible bioinformatics (Koesterlab) 1 Dec 16, 2021
Minimal working example of data acquisition with nidaqmx python API

Data Aquisition using NI-DAQmx python API Based on this project It is a minimal working example for data acquisition using the NI-DAQmx python API. It

Pablo 1 Nov 05, 2021
A library to create multi-page Streamlit applications with ease.

A library to create multi-page Streamlit applications with ease.

Jackson Storm 107 Jan 04, 2023
Repository created with LinkedIn profile analysis project done

EN/en Repository created with LinkedIn profile analysis project done. The datase

Mayara Canaver 4 Aug 06, 2022
Fit models to your data in Python with Sherpa.

Table of Contents Sherpa License How To Install Sherpa Using Anaconda Using pip Building from source History Release History Sherpa Sherpa is a modeli

134 Jan 07, 2023
Advanced Pandas Vault — Utilities, Functions and Snippets (by @firmai).

PandasVault ⁠— Advanced Pandas Functions and Code Snippets The only Pandas utility package you would ever need. It has no exotic external dependencies

Derek Snow 374 Jan 07, 2023
In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift.

ETL Pipeline for AWS Project Description In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift. The data is loaded from S3 t

Mobeen Ahmed 1 Nov 01, 2021
Meltano: ELT for the DataOps era. Meltano is open source, self-hosted, CLI-first, debuggable, and extensible.

Meltano is open source, self-hosted, CLI-first, debuggable, and extensible. Pipelines are code, ready to be version c

Meltano 625 Jan 02, 2023
INF42 - Topological Data Analysis

TDA INF421(Conception et analyse d'algorithmes) Projet : Topological Data Analysis SphereMin Etant donné un nuage des points, ce programme contient de

2 Jan 07, 2022
Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment

Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment Brief explanation of PT Bukalapak.com Tbk Bukalapak was found

Najibulloh Asror 2 Feb 10, 2022
Package for decomposing EMG signals into motor unit firings, as used in Formento et al 2021.

EMGDecomp Package for decomposing EMG signals into motor unit firings, created for Formento et al 2021. Based heavily on Negro et al, 2016. Supports G

13 Nov 01, 2022