Full automated data pipeline using docker images

Overview

Create postgres tables from CSV files

This first section is only relate to creating tables from CSV files using postgres container alone. Just one of my experiments. If you interest, you can just follow these steps (only if your working environment support bash):

sh scripts/prep.sh

The prep.sh will handle everything for you by doing follwing:

# Start postgres db container
docker-compose -f postgres.yaml up -d
# Sleep to make sure the container is fully up running
sleep 3 

# I have problem with mouting csv files via docker compose, so here we go
# Copy csv and setup.sql to create required tables
docker cp ./csv/ my_postgres:
docker cp ./scripts/setup.sql my_postgres:setup.sql

# Execute the script in postgres db
docker exec -it my_postgres psql -p5432 --dbname=postgres --username=postgres --file=setup.sql 

# Shutdown the container
docker-compose -f postgres.yaml down --remove-orphans

I had problem with mount volumn that I can't mount the files under csv and scripts folders. Which still can be improved with a proper mount. But let's skip it for now to save time.

Initial Setup/Start Airflow container

This section will use a separate docker-compose.yaml than the above test. It will be relate due to the fact that we want to use airflow to schedule the tasks above (create table and load data). To do so, do the following. First prepare folders. You can call a new folder specifically for this if you want.

# (optional) mkdir airflow && cd airflow
mkdir ./dags ./logs ./plugins

Next we need the airflow docker-compose.yaml in our airflow directory

curl -O https://airflow.apache.org/docs/apache-airflow/stable/docker-compose.yaml

Next make sure we will have a proper permission to initial Airflow

.env ">
echo -e "AIRFLOW_UID=$(id -u)\nAIRFLOW_GID=0" > .env

Then we must initial Airflow instance

docker-compose up airflow-init

Wait until the initial finished then (you can use -d to detach if you want)

docker-compose up

Now you will be able to connect to Airflow GUI via http://localhost:8080/

Create Airflow DAG task

First thing, you need to setup connection for postgres database. Go to tab Admin > Connection > +, wow you have to fill details of the connection:

Connection Id: postgres_default
Connection Type: 'Postgres'
Host: 
   
    
Schema: postgres (default)
Login: 
    
     
Password: 
     
      
Port: 
      

      
     
    
   

Click "Test" button to check your connection then save. Now click at the Airflow icon to return to home page. You should see task name "create_postgres_tables". Try to run by clicking start button select "Trigger DAG".

You might also like...
In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift.

ETL Pipeline for AWS Project Description In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift. The data is loaded from S3 t

Demonstrate a Dataflow pipeline that saves data from an API into BigQuery table

Overview dataflow-mvp provides a basic example pipeline that pulls data from an API and writes it to a BigQuery table using GCP's Dataflow (i.e., Apac

X-news - Pipeline data use scrapy, kafka, spark streaming, spark ML and elasticsearch, Kibana

X-news - Pipeline data use scrapy, kafka, spark streaming, spark ML and elasticsearch, Kibana

An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify.

An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify. The ETL process flows from AWS's S3 into staging tables in AWS Redshift.

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities. This is aimed at those looking to get into the field of Data Science or those who are already in the field and looking to solve a real-world project with python.

Flenser is a simple, minimal, automated exploratory data analysis tool.

Flenser Have you ever been handed a dataset you've never seen before? Flenser is a simple, minimal, automated exploratory data analysis tool. It runs

Lale is a Python library for semi-automated data science.
Lale is a Python library for semi-automated data science.

Lale is a Python library for semi-automated data science. Lale makes it easy to automatically select algorithms and tune hyperparameters of pipelines that are compatible with scikit-learn, in a type-safe fashion.

Data Competition: automated systems that can detect whether people are not wearing masks or are wearing masks incorrectly
Data Competition: automated systems that can detect whether people are not wearing masks or are wearing masks incorrectly

Table of contents Introduction Dataset Model & Metrics How to Run Quickstart Install Training Evaluation Detection DATA COMPETITION The COVID-19 pande

Pipeline and Dataset helpers for complex algorithm evaluation.

tpcp - Tiny Pipelines for Complex Problems A generic way to build object-oriented datasets and algorithm pipelines and tools to evaluate them pip inst

Releases(airflow-postgres-dag)
A data parser for the internal syncing data format used by Fog of World.

A data parser for the internal syncing data format used by Fog of World. The parser is not designed to be a well-coded library with good performance, it is more like a demo for showing the data struc

Zed(Zijun) Chen 40 Dec 12, 2022
Full ELT process on GCP environment.

Rent Houses Germany - GCP Pipeline Project: The goal of the project is to extract data about house rentals in Germany, store, process and analyze it u

Felipe Demenech Vasconcelos 2 Jan 20, 2022
A crude Hy handle on Pandas library

Quickstart Hyenas is a curde Hy handle written on top of Pandas API to allow for more elegant access to data-scientist's powerhouse that is Pandas. In

Peter Výboch 4 Sep 05, 2022
Python package to transfer data in a fast, reliable, and packetized form.

pySerialTransfer Python package to transfer data in a fast, reliable, and packetized form.

PB2 101 Dec 07, 2022
t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology.

tree-SNE t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology. Building on recent advances in s

Isaac Robinson 61 Nov 21, 2022
A Python adaption of Augur to prioritize cell types in perturbation analysis.

A Python adaption of Augur to prioritize cell types in perturbation analysis.

Theis Lab 2 Mar 29, 2022
Convert tables stored as images to an usable .csv file

Convert an image of numbers to a .csv file This Python program aims to convert images of array numbers to corresponding .csv files. It uses OpenCV for

711 Dec 26, 2022
Parses data out of your Google Takeout (History, Activity, Youtube, Locations, etc...)

google_takeout_parser parses both the Historical HTML and new JSON format for Google Takeouts caches individual takeout results behind cachew merge mu

Sean Breckenridge 27 Dec 28, 2022
This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics!

COSMETICS GENERATOR This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics! Remember to put the l

ᴅᴊʟᴏʀ3xᴢᴏ 11 Dec 13, 2022
An interactive grid for sorting, filtering, and editing DataFrames in Jupyter notebooks

qgrid Qgrid is a Jupyter notebook widget which uses SlickGrid to render pandas DataFrames within a Jupyter notebook. This allows you to explore your D

Quantopian, Inc. 2.9k Jan 08, 2023
MS in Data Science capstone project. Studying attacks on autonomous vehicles.

Surveying Attack Models for CAVs Guide to Installing CARLA and Collecting Data Our project focuses on surveying attack models for Connveced Autonomous

Isabela Caetano 1 Dec 09, 2021
An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify.

An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify. The ETL process flows from AWS's S3 into staging tables in AWS Redshift.

1 Feb 11, 2022
A probabilistic programming library for Bayesian deep learning, generative models, based on Tensorflow

ZhuSuan is a Python probabilistic programming library for Bayesian deep learning, which conjoins the complimentary advantages of Bayesian methods and

Tsinghua Machine Learning Group 2.2k Dec 28, 2022
This creates a ohlc timeseries from downloaded CSV files from NSE India website and makes a SQLite database for your research.

NSE-timeseries-form-CSV-file-creator-and-SQL-appender- This creates a ohlc timeseries from downloaded CSV files from National Stock Exchange India (NS

PILLAI, Amal 1 Oct 02, 2022
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
Extract Thailand COVID-19 Cluster data from daily briefing pdf.

Thailand COVID-19 Cluster Data Extraction About Extract Clusters from Thailand Daily COVID-19 briefing PDF Download latest data Here. Data will be upd

Noppakorn Jiravaranun 5 Sep 27, 2021
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8k Dec 29, 2022
A utility for functional piping in Python that allows you to access any function in any scope as a partial.

WithPartial Introduction WithPartial is a simple utility for functional piping in Python. The package exposes a context manager (used with with) calle

Michael Milton 1 Oct 26, 2021
A tool to compare differences between dataframes and create a differences report in Excel

similarpanda A module to check for differences between pandas Dataframes, and generate a report in Excel format. This is helpful in a workplace settin

Andre Pretorius 9 Sep 15, 2022
Shot notebooks resuming the main functions of GeoPandas

Shot notebooks resuming the main functions of GeoPandas, 2 notebooks written as Exercises to apply these functions.

1 Jan 12, 2022