Exploring the Top ML and DL GitHub Repositories

Overview

Exploring the Top ML and DL GitHub Repositories

This repository contains my work related to my project where I collected data on the most popular machine learning and deep learning GitHub repositories in order to further visualize and analyze it.

I've written a corresponding article about this project, which you can find on Towards Data Science. The article was selected as an "Editors Pick", and was also selected to be in their "Hands on Tutorials" section of their publication.

At a high level, my analysis is as follows:

  1. I collected data on the top machine learning and deep learning repositories and their respective owners from GitHub.
  2. I cleaned and prepared the data.
  3. I visualized what I thought were interesting patterns, trends, and findings within the data, and discuss each visualization in detail within the TDS article above.

Tools used

Python NumPy pandas tqdm PyGitHub GeoPy Altair tqdm wordcloud docopt black

Replicating the Analysis

I've designed the analysis in this repository so that anyone is able to recreate the data collection, cleaning, and visualization steps in a fully automated manner. To do this, open up a terminal and follow the steps below:

Step 1: Clone this repository to your computer

# clone the repo
git clone https://github.com/nicovandenhooff/top-repo-analysis.git

# change working directory to the repos root directory
cd top-repo-analysis

Step 2: Create and activate the required virtual environment

# create the environment
conda env create -f environment.yaml

# activate the environment
conda activate top-repo-analysis

Step 3: Obtain a GitHub personal access token ("PAT") and add it to the credentials file

Please see how to obtain a PAT here.

Once you have it perform the following:

# open the credentials file
open src/credentials.json

This will open the credentials json file which contains the following:

" }">
{
"github_token": "
   
    "
   
}

Change to your PAT.

Step 4: Run the following command to delete the current data and visualizations in the repository

make clean

Step 5: Run the following command to recreate the analysis

make all

Please note that if you are recreating the analysis:

  • The last step will take several hours to run (approximately 6-8 hours) as the data collection process from GitHub has to sleep to respect the GitHub API rate limit. The total number of API requests for the data collection will approximately be between 20,000 to 30,000.
  • When the data cleaning script data_cleaning.py runs, there make be some errors may be printed to the screen by GeoPy if the Noinatim geolocation service is unable to find a valid location for a GitHub user. This will not cause the script to terminate, and is just ugly in the terminal. Unfortunately you cannot suppress these error messages, so just ignore them if they occur.
  • Getting the location data with GeoPy in the data cleaning script also takes about 30 minutes as the Nominatim geolocation service limits 1 API request per second.
  • I ran this analysis on December 30, 2021 and as such collected the data from GitHub on this date. If you run this analysis in the future, the data you collect will inherently be slightly different if the machine learning and deep learning repositories with the highest number of stars has changed since the date when I ran the analysis. This will slightly change how the resulting visualizations look.

Using the Scraper to Collect New Data

You can also use the scraping script in isolation to collect new data from GitHub if you desire.

If you'd like to do this, all you'll need to do is open up a terminal, follow steps 1 to 3 above, and then perform the following:

Step a) Run the scraping script with your desired options as follows

python src/github_scraper.py --queries=<queries> --path=<path>
  • Replace with your desired queries. Note that if you desire multiple search queries, enclose them in "" separate them by a single comma with NO SPACE after the comma. For example "Machine Learning,Deep Learning"
  • Replace with the output path that you want the scraped data to be saved at.

Please see the documentation in the header of the scraping script for additional options that are available.

Step b) Run the data cleaning script to clean your newly scraped data

python src/data_cleaning.py --input_path=<path> --output_path=<output_path>
  • Replace with the path that you saved the scraped data at.
  • Replace with the output path that you want the cleaned data to be saved at.
  • As metioned in the last section, some errors may be printed to the terminal by GeoPy during the data cleaning process, but feel free to ignore these as they do not affect the execution of the script.

Dependencies

Please see the environment file for a full list of dependencies.

License

The source code for the site is licensed under the MIT license.

You might also like...
Spectacular AI SDK fuses data from cameras and IMU sensors and outputs an accurate 6-degree-of-freedom pose of a device.
Spectacular AI SDK fuses data from cameras and IMU sensors and outputs an accurate 6-degree-of-freedom pose of a device.

Spectacular AI SDK examples Spectacular AI SDK fuses data from cameras and IMU sensors (accelerometer and gyroscope) and outputs an accurate 6-degree-

Working Time Statistics of working hours and working conditions by industry and company

Working Time Statistics of working hours and working conditions by industry and company

A python package which can be pip installed to perform statistics and visualize binomial and gaussian distributions of the dataset

GBiStat package A python package to assist programmers with data analysis. This package could be used to plot : Binomial Distribution of the dataset p

ToeholdTools is a Python package and desktop app designed to facilitate analyzing and designing toehold switches, created as part of the 2021 iGEM competition.

ToeholdTools Category Status Repository Package Build Quality A library for the analysis of toehold switch riboregulators created by the iGEM team Cit

A collection of robust and fast processing tools for parsing and analyzing web archive data.

ChatNoir Resiliparse A collection of robust and fast processing tools for parsing and analyzing web archive data. Resiliparse is part of the ChatNoir

Python beta calculator that retrieves stock and market data and provides linear regressions.

Stock and Index Beta Calculator Python script that calculates the beta (β) of a stock against the chosen index. The script retrieves the data and resa

Larch: Applications and Python Library for Data Analysis of X-ray Absorption Spectroscopy (XAS, XANES, XAFS, EXAFS), X-ray Fluorescence (XRF) Spectroscopy and Imaging

Larch: Data Analysis Tools for X-ray Spectroscopy and More Documentation: http://xraypy.github.io/xraylarch Code: http://github.com/xraypy/xraylarch L

A real-time financial data streaming pipeline and visualization platform using Apache Kafka, Cassandra, and Bokeh.
A real-time financial data streaming pipeline and visualization platform using Apache Kafka, Cassandra, and Bokeh.

Realtime Financial Market Data Visualization and Analysis Introduction This repo shows my project about real-time stock data pipeline. All the code is

Python script to automate the plotting and analysis of percentage depth dose and dose profile simulations in TOPAS.

topas-create-graphs A script to automatically plot the results of a topas simulation Works for percentage depth dose (pdd) and dose profiles (dp). Dep

Releases(v1.0.0)
Owner
Nico Van den Hooff
UBC Master of Data Science 2022
Nico Van den Hooff
Powerful, efficient particle trajectory analysis in scientific Python.

freud Overview The freud Python library provides a simple, flexible, powerful set of tools for analyzing trajectories obtained from molecular dynamics

Glotzer Group 195 Dec 20, 2022
Cleaning and analysing aggregated UK political polling data.

Analysing aggregated UK polling data The tweet collection & storage pipeline used in email-service is used to also collect tweets from @britainelects.

Ajay Pethani 0 Dec 22, 2021
Random dataframe and database table generator

Random database/dataframe generator Authored and maintained by Dr. Tirthajyoti Sarkar, Fremont, USA Introduction Often, beginners in SQL or data scien

Tirthajyoti Sarkar 249 Jan 08, 2023
The Dash Enterprise App Gallery "Oil & Gas Wells" example

This app is based on the Dash Enterprise App Gallery "Oil & Gas Wells" example. For more information and more apps see: Dash App Gallery See the Dash

Austin Caudill 1 Nov 08, 2021
This mini project showcase how to build and debug Apache Spark application using Python

Spark app can't be debugged using normal procedure. This mini project showcase how to build and debug Apache Spark application using Python programming language. There are also options to run Spark a

Denny Imanuel 1 Dec 29, 2021
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

48 Dec 21, 2022
We're Team Arson and we're using the power of predictive modeling to combat wildfires.

We're Team Arson and we're using the power of predictive modeling to combat wildfires. Arson Map Inspiration There’s been a lot of wildfires in Califo

Jerry Lee 3 Oct 17, 2021
A lightweight, hub-and-spoke dashboard for multi-account Data Science projects

A lightweight, hub-and-spoke dashboard for cross-account Data Science Projects Introduction Modern Data Science environments often involve many indepe

AWS Samples 3 Oct 30, 2021
a tool that compiles a csv of all h1 program stats

h1stats - h1 Program Stats Scraper This python3 script will call out to HackerOne's graphql API and scrape all currently active programs for informati

Evan 40 Oct 27, 2022
A tax calculator for stocks and dividends activities.

Revolut Stocks calculator for Bulgarian National Revenue Agency Information Processing and calculating the required information about stock possession

Doino Gretchenliev 200 Oct 25, 2022
SparseLasso: Sparse Solutions for the Lasso

SparseLasso: Sparse Solutions for the Lasso Introduction SparseLasso provides a Scikit-Learn based estimation of the Lasso with cross-validation tunin

Gabriel Okasa 1 Nov 08, 2021
An orchestration platform for the development, production, and observation of data assets.

Dagster An orchestration platform for the development, production, and observation of data assets. Dagster lets you define jobs in terms of the data f

Dagster 6.2k Jan 08, 2023
Evidence enables analysts to deliver a polished business intelligence system using SQL and markdown.

Evidence enables analysts to deliver a polished business intelligence system using SQL and markdown

915 Dec 26, 2022
Monitor the stability of a pandas or spark dataframe ⚙︎

Population Shift Monitoring popmon is a package that allows one to check the stability of a dataset. popmon works with both pandas and spark datasets.

ING Bank 403 Dec 07, 2022
Senator Trades Monitor

Senator Trades Monitor This monitor will grab the most recent trades by senators and send them as a webhook to discord. Installation To use the monito

Yousaf Cheema 5 Jun 11, 2022
Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python

Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python This project is a good starting point for those who have little

Himanshu Kumar singh 2 Dec 04, 2021
Python tools for querying and manipulating BIDS datasets.

PyBIDS is a Python library to centralize interactions with datasets conforming BIDS (Brain Imaging Data Structure) format.

Brain Imaging Data Structure 180 Dec 18, 2022
The micro-framework to create dataframes from functions.

The micro-framework to create dataframes from functions.

Stitch Fix Technology 762 Jan 07, 2023
Conduits - A Declarative Pipelining Tool For Pandas

Conduits - A Declarative Pipelining Tool For Pandas Traditional tools for declaring pipelines in Python suck. They are mostly imperative, and can some

Kale Miller 7 Nov 21, 2021
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022