A collection of robust and fast processing tools for parsing and analyzing web archive data.

Overview

ChatNoir Resiliparse

Build Wheels Codecov Documentation Status

A collection of robust and fast processing tools for parsing and analyzing web archive data.

Resiliparse is part of the ChatNoir web analytics toolkit. If you use ChatNoir or any of its tools for a publication, you can make us happy by citing our ECIR demo paper:

@InProceedings{bevendorff:2018,
  address =             {Berlin Heidelberg New York},
  author =              {Janek Bevendorff and Benno Stein and Matthias Hagen and Martin Potthast},
  booktitle =           {Advances in Information Retrieval. 40th European Conference on IR Research (ECIR 2018)},
  editor =              {Leif Azzopardi and Allan Hanbury and Gabriella Pasi and Benjamin Piwowarski},
  ids =                 {potthast:2018c,stein:2018c},
  month =               mar,
  publisher =           {Springer},
  series =              {Lecture Notes in Computer Science},
  site =                {Grenoble, France},
  title =               {{Elastic ChatNoir: Search Engine for the ClueWeb and the Common Crawl}},
  year =                2018
}

Usage Instructions

For detailed information about the build process, dependencies, APIs, or usage instructions, please read the Resiliparse Documentation

Resiliparse Module Summary

The Resiliparse collection encompasses the following two modules at the moment:

1. Resiliparse

The Resiliparse main module with the following subcomponents:

Parsing Utilities

The Resiliparse Parsing Utilities are the largest submodule and provide an extensive (and growing) collection of efficient tools for dealing with encodings and raw protocol payloads, parsing HTML web pages, and preparing them for further processing by extracting structural or semantic information.

Main documentation: Resiliparse Parsing Utilities

Process Guards

The Resiliparse Process Guard module is a set of decorators and context managers for guarding a processing context to stay within pre-defined limits for execution time and memory usage. Process Guards help to ensure the (partially) successful completion of batch processing jobs in which individual tasks may time out or use abnormal amounts of memory, but in which the success of the whole job is not threatened by (a few) individual failures. A guarded processing context will be interrupted upon exceeding its resource limits so that the task can be skipped or rescheduled.

Main documentation: Resiliparse Process Guards

Itertools

Resiliparse Itertools are a collection of convenient and robust helper functions for iterating over data from unreliable sources using other tools from the Resiliparse toolkit.

Main documentation: Resiliparse Itertools

2. FastWARC

FastWARC is a high-performance WARC parsing library for Python written in C++/Cython. The API is inspired in large parts by WARCIO, but does not aim at being a drop-in replacement. FastWARC supports compressed and uncompressed WARC/1.0 and WARC/1.1 streams. Supported compression algorithms are GZip and LZ4.

Main documentation: FastWARC and FastWARC CLI

Installation

The main Resiliparse package can be installed from PyPi as follows:

pip install resiliparse

FastWARC is being distributed as its own package and can be installed like so:

pip install fastwarc

For optimal performance, however, it is recommended to build FastWARC from sources instead of relying on the pre-built binaries. See below for more information.

Building From Source

To build Resiliparse or FastWARC from sources, you need to install all required build-time dependencies first. On Ubuntu, this is done as follows:

# Add Lexbor repository
curl -L https://lexbor.com/keys/lexbor_signing.key | sudo apt-key add -
echo "deb https://packages.lexbor.com/ubuntu/ $(lsb_release -sc) liblexbor" | \
    sudo tee /etc/apt/sources.list.d/lexbor.list

# Install build dependencies
sudo apt update
sudo apt install build-essential python3-dev zlib1g-dev \
    liblz4-dev libuchardet-dev liblexbor-dev

Then, to build the actual packages, run:

# Optional: Create a fresh venv first
python3 -m venv venv && source venv/bin/activate

# Build and install Resiliparse
pip install -e resiliparse

# Build and install FastWARC
pip install -e fastwarc

Instead of building the packages from this repository, you can also build them from the PyPi source packages:

# Build Resiliparse from PyPi
pip install --no-binary resiliparse resiliparse

# Build FastWARC from PyPi
pip install --no-binary fastwarc fastwarc
Owner
ChatNoir
ChatNoir Research Web Search Engine
ChatNoir
Template for a Dataflow Flex Template in Python

Dataflow Flex Template in Python This repository contains a template for a Dataflow Flex Template written in Python that can easily be used to build D

STOIX 5 Apr 28, 2022
A Big Data ETL project in PySpark on the historical NYC Taxi Rides data

Processing NYC Taxi Data using PySpark ETL pipeline Description This is an project to extract, transform, and load large amount of data from NYC Taxi

Unnikrishnan 2 Dec 12, 2021
Approximate Nearest Neighbor Search for Sparse Data in Python!

Approximate Nearest Neighbor Search for Sparse Data in Python! This library is well suited to finding nearest neighbors in sparse, high dimensional spaces (like text documents).

Meta Research 906 Jan 01, 2023
Containerized Demo of Apache Spark MLlib on a Data Lakehouse (2022)

Spark-DeltaLake-Demo Reliable, Scalable Machine Learning (2022) This project was completed in an attempt to become better acquainted with the latest b

8 Mar 21, 2022
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023
Exploratory Data Analysis for Employee Retention Dataset

Exploratory Data Analysis for Employee Retention Dataset Employee turn-over is a very costly problem for companies. The cost of replacing an employee

kana sudheer reddy 2 Oct 01, 2021
ASOUL直播间弹幕抓取&&数据分析

ASOUL直播间弹幕抓取&&数据分析(更新中) 这些文件用于爬取ASOUL直播间的弹幕(其他直播间也可以)和其他信息,以及简单的数据分析生成。

159 Dec 10, 2022
Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Damien Farrell 81 Dec 26, 2022
Find exposed data in Azure with this public blob scanner

BlobHunter A tool for scanning Azure blob storage accounts for publicly opened blobs. BlobHunter is a part of "Hunting Azure Blobs Exposes Millions of

CyberArk 250 Jan 03, 2023
Produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

Amber Electric Usage Summary This is a command line tool that produces a summary CSV report of an Amber Electric customer's energy consumption and cos

Graham Lea 12 May 26, 2022
Utilize data analytics skills to solve real-world business problems using Humana’s big data

Humana-Mays-2021-HealthCare-Analytics-Case-Competition- The goal of the project is to utilize data analytics skills to solve real-world business probl

Yongxian (Caroline) Lun 1 Dec 27, 2021
💬 Python scripts to parse Messenger, Hangouts, WhatsApp and Telegram chat logs into DataFrames.

Chatistics Python 3 scripts to convert chat logs from various messaging platforms into Pandas DataFrames. Can also generate histograms and word clouds

Florian 893 Jan 02, 2023
Data imputations library to preprocess datasets with missing data

Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do.

Elton Law 329 Dec 05, 2022
🧪 Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.

🧪📈 🐍. The purpose of the panel-chemistry project is to make it really easy for you to do DATA ANALYSIS and build powerful DATA AND VIZ APPLICATIONS within the domain of Chemistry using using Python a

Marc Skov Madsen 97 Dec 08, 2022
This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics!

COSMETICS GENERATOR This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics! Remember to put the l

ᴅᴊʟᴏʀ3xᴢᴏ 11 Dec 13, 2022
An orchestration platform for the development, production, and observation of data assets.

Dagster An orchestration platform for the development, production, and observation of data assets. Dagster lets you define jobs in terms of the data f

Dagster 6.2k Jan 08, 2023
A set of procedures that can realize covid19 virus detection based on blood.

A set of procedures that can realize covid19 virus detection based on blood.

Nuyoah-xlh 3 Mar 07, 2022
First steps with Python in Life Sciences

First steps with Python in Life Sciences This course material is part of the "First Steps with Python in Life Science" three-day course of SIB-trainin

SIB Swiss Institute of Bioinformatics 22 Jan 08, 2023
Code for the DH project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval Muslim World"

Damast This repository contains code developed for the digital humanities project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval

University of Stuttgart Visualization Research Center 2 Jul 01, 2022
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

48 Dec 21, 2022