Accurately separate the TLD from the registered domain and subdomains of a URL, using the Public Suffix List.

Overview

tldextract

Python Module PyPI version Build Status

tldextract accurately separates the gTLD or ccTLD (generic or country code top-level domain) from the registered domain and subdomains of a URL. For example, say you want just the 'google' part of 'http://www.google.com'.

Everybody gets this wrong. Splitting on the '.' and taking the last 2 elements goes a long way only if you're thinking of simple e.g. .com domains. Think parsing http://forums.bbc.co.uk for example: the naive splitting method above will give you 'co' as the domain and 'uk' as the TLD, instead of 'bbc' and 'co.uk' respectively.

tldextract on the other hand knows what all gTLDs and ccTLDs look like by looking up the currently living ones according to the Public Suffix List (PSL). So, given a URL, it knows its subdomain from its domain, and its domain from its country code.

>>> import tldextract

>>> tldextract.extract('http://forums.news.cnn.com/')
ExtractResult(subdomain='forums.news', domain='cnn', suffix='com')

>>> tldextract.extract('http://forums.bbc.co.uk/') # United Kingdom
ExtractResult(subdomain='forums', domain='bbc', suffix='co.uk')

>>> tldextract.extract('http://www.worldbank.org.kg/') # Kyrgyzstan
ExtractResult(subdomain='www', domain='worldbank', suffix='org.kg')

ExtractResult is a namedtuple, so it's simple to access the parts you want.

>>> ext = tldextract.extract('http://forums.bbc.co.uk')
>>> (ext.subdomain, ext.domain, ext.suffix)
('forums', 'bbc', 'co.uk')
>>> # rejoin subdomain and domain
>>> '.'.join(ext[:2])
'forums.bbc'
>>> # a common alias
>>> ext.registered_domain
'bbc.co.uk'

Note subdomain and suffix are optional. Not all URL-like inputs have a subdomain or a valid suffix.

>>> tldextract.extract('google.com')
ExtractResult(subdomain='', domain='google', suffix='com')

>>> tldextract.extract('google.notavalidsuffix')
ExtractResult(subdomain='google', domain='notavalidsuffix', suffix='')

>>> tldextract.extract('http://127.0.0.1:8080/deployed/')
ExtractResult(subdomain='', domain='127.0.0.1', suffix='')

If you want to rejoin the whole namedtuple, regardless of whether a subdomain or suffix were found:

>>> ext = tldextract.extract('http://127.0.0.1:8080/deployed/')
>>> # this has unwanted dots
>>> '.'.join(ext)
'.127.0.0.1.'
>>> # join each part only if it's truthy
>>> '.'.join(part for part in ext if part)
'127.0.0.1'

By default, this package supports the public ICANN TLDs and their exceptions. You can optionally support the Public Suffix List's private domains as well.

This module started by implementing the chosen answer from this StackOverflow question on getting the "domain name" from a URL. However, the proposed regex solution doesn't address many country codes like com.au, or the exceptions to country codes like the registered domain parliament.uk. The Public Suffix List does, and so does this module.

Installation

Latest release on PyPI:

pip install tldextract

Or the latest dev version:

pip install -e 'git://github.com/john-kurkowski/tldextract.git#egg=tldextract'

Command-line usage, splits the url components by space:

tldextract http://forums.bbc.co.uk
# forums bbc co.uk

Note About Caching

Beware when first running the module, it updates its TLD list with a live HTTP request. This updated TLD set is usually cached indefinitely in ``$HOME/.cache/python-tldextract`. To control the cache's location, set TLDEXTRACT_CACHE environment variable or set the cache_dir path in TLDExtract initialization.

(Arguably runtime bootstrapping like that shouldn't be the default behavior, like for production systems. But I want you to have the latest TLDs, especially when I haven't kept this code up to date.)

# extract callable that falls back to the included TLD snapshot, no live HTTP fetching
no_fetch_extract = tldextract.TLDExtract(suffix_list_urls=None)
no_fetch_extract('http://www.google.com')

# extract callable that reads/writes the updated TLD set to a different path
custom_cache_extract = tldextract.TLDExtract(cache_dir='/path/to/your/cache/')
custom_cache_extract('http://www.google.com')

# extract callable that doesn't use caching
no_cache_extract = tldextract.TLDExtract(cache_dir=False)
no_cache_extract('http://www.google.com')

If you want to stay fresh with the TLD definitions--though they don't change often--delete the cache file occasionally, or run

tldextract --update

or:

env TLDEXTRACT_CACHE="~/tldextract.cache" tldextract --update

It is also recommended to delete the file after upgrading this lib.

Advanced Usage

Public vs. Private Domains

The PSL maintains a concept of "private" domains.

PRIVATE domains are amendments submitted by the domain holder, as an expression of how they operate their domain security policy. … While some applications, such as browsers when considering cookie-setting, treat all entries the same, other applications may wish to treat ICANN domains and PRIVATE domains differently.

By default, tldextract treats public and private domains the same.

>>> extract = tldextract.TLDExtract()
>>> extract('waiterrant.blogspot.com')
ExtractResult(subdomain='waiterrant', domain='blogspot', suffix='com')

The following overrides this.

>>> extract = tldextract.TLDExtract()
>>> extract('waiterrant.blogspot.com', include_psl_private_domains=True)
ExtractResult(subdomain='', domain='waiterrant', suffix='blogspot.com')

or to change the default for all extract calls,

>>> extract = tldextract.TLDExtract( include_psl_private_domains=True)
>>> extract('waiterrant.blogspot.com')
ExtractResult(subdomain='', domain='waiterrant', suffix='blogspot.com')

The thinking behind the default is, it's the more common case when people mentally parse a URL. It doesn't assume familiarity with the PSL nor that the PSL makes such a distinction. Note this may run counter to the default parsing behavior of other, PSL-based libraries.

Specifying your own URL or file for the Suffix List data

You can specify your own input data in place of the default Mozilla Public Suffix List:

extract = tldextract.TLDExtract(
    suffix_list_urls=["http://foo.bar.baz"],
    # Recommended: Specify your own cache file, to minimize ambiguities about where
    # tldextract is getting its data, or cached data, from.
    cache_dir='/path/to/your/cache/',
    fallback_to_snapshot=False)

The above snippet will fetch from the URL you specified, upon first need to download the suffix list (i.e. if the cached version doesn't exist).

If you want to use input data from your local filesystem, just use the file:// protocol:

extract = tldextract.TLDExtract(
    suffix_list_urls=["file://absolute/path/to/your/local/suffix/list/file"],
    cache_dir='/path/to/your/cache/',
    fallback_to_snapshot=False)

Use an absolute path when specifying the suffix_list_urls keyword argument. os.path is your friend.

FAQ

Can you add suffix ____? Can you make an exception for domain ____?

This project doesn't contain an actual list of public suffixes. That comes from the Public Suffix List (PSL). Submit amendments there.

(In the meantime, you can tell tldextract about your exception by either forking the PSL and using your fork in the suffix_list_urls param, or adding your suffix piecemeal with the extra_suffixes param.)

If I pass an invalid URL, I still get a result, no error. What gives?

To keep tldextract light in LoC & overhead, and because there are plenty of URL validators out there, this library is very lenient with input. If valid URLs are important to you, validate them before calling tldextract.

This lenient stance lowers the learning curve of using the library, at the cost of desensitizing users to the nuances of URLs. Who knows how much. But in the future, I would consider an overhaul. For example, users could opt into validation, either receiving exceptions or error metadata on results.

Contribute

Setting up

  1. git clone this repository.
  2. Change into the new directory.
  3. pip install tox

Running the Test Suite

Run all tests against all supported Python versions:

tox --parallel

Run all tests against a specific Python environment configuration:

tox -l
tox -e py37
Owner
John Kurkowski
UX Engineering Consultant
John Kurkowski
Bigdata Simulation Library Of Dream By Sandman Books

BIGDATA SIMULATION LIBRARY OF DREAM BY SANDMAN BOOKS ================= Solution Architecture Description In the realm of Dreaming, its ruler SANDMAN,

Maycon Cypriano 3 Jun 30, 2022
This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

Ishan Hegde 1 Nov 17, 2021
small package with utility functions for analyzing (fly) calcium imaging data

fly2p Tools for analyzing two-photon (2p) imaging data collected with Vidrio Scanimage software and micromanger. Loading scanimage data relies on scan

Hannah Haberkern 3 Dec 14, 2022
DaCe is a parallel programming framework that takes code in Python/NumPy and other programming languages

aCe - Data-Centric Parallel Programming Decoupling domain science from performance optimization. DaCe is a parallel programming framework that takes c

SPCL 330 Dec 30, 2022
Larch: Applications and Python Library for Data Analysis of X-ray Absorption Spectroscopy (XAS, XANES, XAFS, EXAFS), X-ray Fluorescence (XRF) Spectroscopy and Imaging

Larch: Data Analysis Tools for X-ray Spectroscopy and More Documentation: http://xraypy.github.io/xraylarch Code: http://github.com/xraypy/xraylarch L

xraypy 95 Dec 13, 2022
Data Analytics on Genomes and Genetics

Data Analytics performed on On genomes and Genetics dataset to predict genetic disorder and disorder subclass. DONE by TEAM SIGMA!

1 Jan 12, 2022
A data structure that extends pyspark.sql.DataFrame with metadata information.

MetaFrame A data structure that extends pyspark.sql.DataFrame with metadata info

Invent Analytics 8 Feb 15, 2022
This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

1 Dec 28, 2021
🧪 Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.

🧪📈 🐍. The purpose of the panel-chemistry project is to make it really easy for you to do DATA ANALYSIS and build powerful DATA AND VIZ APPLICATIONS within the domain of Chemistry using using Python a

Marc Skov Madsen 97 Dec 08, 2022
Visions provides an extensible suite of tools to support common data analysis operations

Visions And these visions of data types, they kept us up past the dawn. Visions provides an extensible suite of tools to support common data analysis

168 Dec 28, 2022
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data

tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)

136 Dec 22, 2022
Employee Turnover Analysis

Employee Turnover Analysis Submission to the DataCamp competition "Can you help reduce employee turnover?"

Jannik Wiedenhaupt 1 Feb 13, 2022
Statistical Rethinking: A Bayesian Course Using CmdStanPy and Plotnine

Statistical Rethinking: A Bayesian Course Using CmdStanPy and Plotnine Intro This repo contains the python/stan version of the Statistical Rethinking

Andrés Suárez 3 Nov 08, 2022
Data collection, enhancement, and metrics calculation.

l3_data_collection Data collection, enhancement, and metrics calculation. Summary Repository containing code for QuantDAO's JDT data collection task.

Ruiwyn 3 Dec 23, 2022
Python data processing, analysis, visualization, and data operations

Python This is a Python data processing, analysis, visualization and data operations of the source code warehouse, book ISBN: 9787115527592 Descriptio

FangWei 1 Jan 16, 2022
A simplified prototype for an as-built tracking database with API

Asbuilt_Trax A simplified prototype for an as-built tracking database with API The purpose of this project is to: Model a database that tracks constru

Ryan Pemberton 1 Jan 31, 2022
PostQF is a user-friendly Postfix queue data filter which operates on data produced by postqueue -j.

PostQF Copyright © 2022 Ralph Seichter PostQF is a user-friendly Postfix queue data filter which operates on data produced by postqueue -j. See the ma

Ralph Seichter 11 Nov 24, 2022
A lightweight interface for reading in output from the Weather Research and Forecasting (WRF) model into xarray Dataset

xwrf A lightweight interface for reading in output from the Weather Research and Forecasting (WRF) model into xarray Dataset. The primary objective of

National Center for Atmospheric Research 43 Nov 29, 2022
Exploring the Top ML and DL GitHub Repositories

This repository contains my work related to my project where I scraped data on the most popular machine learning and deep learning GitHub repositories in order to further visualize and analyze it.

Nico Van den Hooff 17 Aug 21, 2022
songplays datamart provide details about the musical taste of our customers and can help us to improve our recomendation system

Songplays User activity datamart The following document describes the model used to build the songplays datamart table and the respective ETL process.

Leandro Kellermann de Oliveira 1 Jul 13, 2021