PostQF is a user-friendly Postfix queue data filter which operates on data produced by postqueue -j.

Related tags

Data Analysispostqf
Overview

PostQF

Copyright © 2022 Ralph Seichter

PostQF is a user-friendly Postfix queue data filter which operates on data produced by postqueue -j. See the manual page's subsection titled "JSON object format" for details. PostQF offers convenient features for analysis and and cleanup of Postfix mail queues.

I have used the all-purpose JSON manipulation utility "jq" before, but found it inconvenient for everyday Postfix administration tasks. "jq" offers great flexibility and handles all sorts of JSON input, but it comes at the cost of complexity. PostQF is an alternative specifically tailored for easier access to Postfix queues.

To facilitate the use of Unix-like pipelines, PostQF usually reads from stdin and writes to stdout. Using command line arguments, you can override this behaviour and define one or more input files and/or an output file. Depending on the context, a horizontal dash - represents either stdin or stdout. See the command line usage description below.

Example usage

Find all messages in the deferred queue where the delay reason contains the string connection timed out.

postqueue -j | postqf -q deferred -d 'connection timed out'

Find all messages in the active or hold queues which have at least one recipient in the example.com or example.org domains, and write the matching JSON records into the file /tmp/output.

postqueue -j | postqf -q 'active|hold' -r '@example\.(com|org)' -o /tmp/output

Find all messages all queues for which the sender address is [email protected] or [email protected], and pipe the queue IDs to postsuper in order to place the matching messages on hold.

postqueue -j | postqf -s '^(alice|bob)@gmail\.com$' -i | postsuper -h -

Print the number of messages which arrived during the last 30 minutes.

postqueue -j | postqf -a 30m | wc -l

The final example assumes a directory /tmp/data with several files, each containing JSON output produced at some previous time. The command pipes all queue IDs which have ever been in the hold queue into the file idlist, relying on BASH wildcard expansion to generate a list of input files.

postqf -i -q hold /tmp/data/*.json > idlist

Filters

Queue entries can be easily filtered by

  • Arrival time
  • Delay reason
  • Queue name
  • Recipient address
  • Sender address

and combinations thereof, using regular expressions. Anchoring is optional, meaning that plain text is treated as a substring pattern.

The arrival time filters do not use regular expressions, but instead a human-readable representation of a time difference. The format is W unit, without spaces. W is a "whole number" (i.e. a number ≥ 0). The unit is a single letter among s, m, h, d (seconds, minutes, hours, days).

-b 3d and -a 90m are both examples of valid command line arguments. Note that arrival filters are interpreted relative to the time PostQF is run. The two examples signify "message arrived more than 3 days ago" (before timestamp) and "message arrived less than 90 minutes ago" (after timestamp), respectively.

Command line usage

postqf [-h] [-i] [-d [REGEX]] [-q [REGEX]] [-r [REGEX]] [-s [REGEX]]
       [-a [TS] | -b [TS]] [-o [PATH]] [PATH [PATH ...]]

positional arguments:
  PATH        Input file. Use a dash "-" for standard input.

optional arguments:
  -h, --help  show this help message and exit
  -i          ID output only
  -o [PATH]   Output file. Use a dash "-" for standard output.

Regular expression filters:
  -d [REGEX]  Delay reason filter
  -q [REGEX]  Queue name filter
  -r [REGEX]  Recipient address filter
  -s [REGEX]  Sender address filter

Arrival time filters (mutually exclusive):
  -a [TS]     Message arrived after TS
  -b [TS]     Message arrived before TS

Installation

The only installation requirement is Python 3.7 or newer. PostQF is distributed via PyPI.org and can usually be installed using pip. If this fails, or if both Python 2.x and 3.x are installed on your machine, use pip3 instead.

If possible, use the recommended installation with a Python virtual environment. Site-wide installation usually requires root privileges.

# Recommended: Installation using a Python virtual environment.
mkdir ~/postqf
cd ~/postqf
python3 -m venv .venv
source .venv/bin/activate
pip install -U pip postqf
# Alternative: Site-wide installation, requires root access.
sudo pip install postqf

The pip installation process adds a launcher executable postqf, either site-wide or in the Python virtual environment. In the latter case, the launcher will be placed into the directory .venv/bin which is automatically added to your PATH variable when you activate the venv environment as shown above.

Contact

The project is hosted on GitHub in the rseichter/postqf repository. If you have suggestions or run into any problems, please check the discussions section first. There is also an issue tracker available, and the build configuration file contains a contact email address.

You might also like...
Functional Data Analysis, or FDA, is the field of Statistics that analyses data that depend on a continuous parameter. Fancy data functions that will make your life as a data scientist easier.
Fancy data functions that will make your life as a data scientist easier.

WhiteBox Utilities Toolkit: Tools to make your life easier Fancy data functions that will make your life as a data scientist easier. Installing To ins

A Big Data ETL project in PySpark on the historical NYC Taxi Rides data

Processing NYC Taxi Data using PySpark ETL pipeline Description This is an project to extract, transform, and load large amount of data from NYC Taxi

Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.
Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

Utilize data analytics skills to solve real-world business problems using Humana’s big data

Humana-Mays-2021-HealthCare-Analytics-Case-Competition- The goal of the project is to utilize data analytics skills to solve real-world business probl

Python data processing, analysis, visualization, and data operations

Python This is a Python data processing, analysis, visualization and data operations of the source code warehouse, book ISBN: 9787115527592 Descriptio

PrimaryBid - Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift
PrimaryBid - Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift

Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift This project is composed of two parts: Part1 and Part2

Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials
Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Data Scientist Learning Plan Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Catalogue data - A Python Scripts to prepare catalogue data

catalogue_data Scripts to prepare catalogue data. Setup Clone this repo. Install

Comments
  • Permit using

    Permit using "before" and "after" time filters at the same time

    The command line arguments -a and -b are mutually exclusive as of release 0.1. If using both at the same time was permitted, users could express an interval, allowing searches for "message arrived between timestamps X and Y".

    enhancement 
    opened by rseichter 1
  • Support absolute time for before/after filter arguments

    Support absolute time for before/after filter arguments

    Command line arguments -a and -b currently allow only passing a time difference like 45m or 3d. It would be helpful to also support strings representing absolute points in time. Here is an example for how it might look when using the ISO 8601 format:

    $ date --iso-8601=s
    2022-01-23T22:10:56+01:00
    
    $ postqueue -b '2022-01-23T22:10:56+01:00'
    

    It would also be useful to allow passing epoch time arguments, because postqueue -j returns message arrival times as seconds since the Epoch.

    enhancement 
    opened by rseichter 1
Releases(0.5)
  • 0.5(Feb 6, 2022)

    In addition to filtering JSON input and producing JSON output in the process, PostQF can now also generate a number of simple reports to answer some frequently asked questions about message queue content. The following data can be shown in reports:

    • Delay reason
    • Recipient address
    • Recipient domain
    • Sender address
    • Sender domain
    Source code(tar.gz)
    Source code(zip)
  • 0.4(Feb 2, 2022)

  • 0.3(Jan 28, 2022)

    • Output is now correctly rendered as JSON instead of a Python dict.
    • Simplified installation process. In addition to pip based setup, an installation BASH script is now provided.
    Source code(tar.gz)
    Source code(zip)
  • 0.2(Jan 24, 2022)

    • Release 0.2 introduces the ability to use both -a and -b time filters simultaneously, in order to specify time intervals.
    • Time filter strings can now use ISO 8601 strings and Unix time in addition to relative time differences expressed in the form 42m or 2d. This allows users to also specify absolute points in time as arrival thresholds.
    Source code(tar.gz)
    Source code(zip)
  • 0.1(Jan 23, 2022)

Owner
Ralph Seichter
Ralph Seichter
Minimal working example of data acquisition with nidaqmx python API

Data Aquisition using NI-DAQmx python API Based on this project It is a minimal working example for data acquisition using the NI-DAQmx python API. It

Pablo 1 Nov 05, 2021
Elementary is an open-source data reliability framework for modern data teams. The first module of the framework is data lineage.

Data lineage made simple, reliable, and automated. Effortlessly track the flow of data, understand dependencies and analyze impact. Features Visualiza

898 Jan 09, 2023
Analysis of a dataset of 10000 passwords to find common trends and mistakes people generally make while setting up a password.

Analysis of a dataset of 10000 passwords to find common trends and mistakes people generally make while setting up a password.

Aryan Raj 7 Sep 04, 2022
PyIOmica (pyiomica) is a Python package for omics analyses.

PyIOmica (pyiomica) This repository contains PyIOmica, a Python package that provides bioinformatics utilities for analyzing (dynamic) omics datasets.

G. Mias Lab 13 Jun 29, 2022
CS50 pset9: Using flask API to create a web application to exchange stocks' shares.

C$50 Finance In this guide we want to implement a website via which users can “register”, “login” “buy” and “sell” stocks, like below: Background If y

1 Jan 24, 2022
Conduits - A Declarative Pipelining Tool For Pandas

Conduits - A Declarative Pipelining Tool For Pandas Traditional tools for declaring pipelines in Python suck. They are mostly imperative, and can some

Kale Miller 7 Nov 21, 2021
MotorcycleParts DataAnalysis python

We work with the accounting department of a company that sells motorcycle parts. The company operates three warehouses in a large metropolitan area.

NASEEM A P 1 Jan 12, 2022
Techdegree Data Analysis Project 2

Basketball Team Stats Tool In this project you will be writing a program that reads from the "constants" data (PLAYERS and TEAMS) in constants.py. Thi

2 Oct 23, 2021
This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics!

COSMETICS GENERATOR This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics! Remember to put the l

ᴅᴊʟᴏʀ3xᴢᴏ 11 Dec 13, 2022
A probabilistic programming library for Bayesian deep learning, generative models, based on Tensorflow

ZhuSuan is a Python probabilistic programming library for Bayesian deep learning, which conjoins the complimentary advantages of Bayesian methods and

Tsinghua Machine Learning Group 2.2k Dec 28, 2022
Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

2 Nov 20, 2021
Data Competition: automated systems that can detect whether people are not wearing masks or are wearing masks incorrectly

Table of contents Introduction Dataset Model & Metrics How to Run Quickstart Install Training Evaluation Detection DATA COMPETITION The COVID-19 pande

Thanh Dat Vu 1 Feb 27, 2022
DataPrep — The easiest way to prepare data in Python

DataPrep — The easiest way to prepare data in Python

SFU Database Group 1.5k Dec 27, 2022
4CAT: Capture and Analysis Toolkit

4CAT: Capture and Analysis Toolkit 4CAT is a research tool that can be used to analyse and process data from online social platforms. Its goal is to m

Digital Methods Initiative 147 Dec 20, 2022
Data imputations library to preprocess datasets with missing data

Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do.

Elton Law 329 Dec 05, 2022
INF42 - Topological Data Analysis

TDA INF421(Conception et analyse d'algorithmes) Projet : Topological Data Analysis SphereMin Etant donné un nuage des points, ce programme contient de

2 Jan 07, 2022
The Spark Challenge Student Check-In/Out Tracking Script

The Spark Challenge Student Check-In/Out Tracking Script This Python Script uses the Student ID Database to match the entries with the ID Card Swipe a

1 Dec 09, 2021
A forecasting system dedicated to smart city data

smart-city-predictions System prognostyczny dedykowany dla danych inteligentnych miast Praca inżynierska realizowana przez Michała Stawikowskiego and

Kevin Lai 1 Nov 08, 2021
Toolchest provides APIs for scientific and bioinformatic data analysis.

Toolchest Python Client Toolchest provides APIs for scientific and bioinformatic data analysis. It allows you to abstract away the costliness of runni

Toolchest 11 Jun 30, 2022
Bearsql allows you to query pandas dataframe with sql syntax.

Bearsql adds sql syntax on pandas dataframe. It uses duckdb to speedup the pandas processing and as the sql engine

14 Jun 22, 2022