Mining the Stack Overflow Developer Survey

Overview

Mining the Stack Overflow Developer Survey

A prototype data mining application to compare the accuracy of decision tree and random forest regression models to predict annual compensation of tech workers in the US and Europe.

Objectives

Usage

To run, download the repository and execute the file main.py in the src directory with your python path variable. For example, python3 main.py.

Dependencies

  • python 3.8.1 and up
  • pandas 1.3.4 and up
  • matplotlib 3.4.3 and up
  • numpy 1.21.0 and up
  • sklearn 1.0.1 and up

Methodology

Preprocessing

The original data set provided by Stack Overflow contained 48 attribute columns and 83439 data records. Due to the large size of the data set, we wanted to narrow our focus to a certain subset of the data. In the preprocessing of the original data file, we decided to discard any records that were not employed full-time in the technology industry. Any record that did not contain country, converted annual salary, or yeared coded was also discarded, as this data is vital to our model. We also discarded some of the columns from the original data set that were open-ended. Out of the records that fit our requirements, we exported them to two output csv files. Records of United States data were put together in one output file, and records of European countries were put in the other. Data from any other countries were discarded. Once we have the two cleaned files, we applied additional preprocessing techniques. Any missing attributes that remained were replaced with 'NA' if the attributes were nominal. Two special cases existed in the columns for years coded and years coded professionally. Most contained a numerical value for the years, but some had a string for 'Less than one year' and 'More than 50 years'. These strings were replaced with 0 and 50, respectively, to keep these columns numerical. With these preprocessing steps complete, the data files are now ready to be processed to generate the models.

Models

We evaluated a variety of data mining models and algorithms to find the ones that would make the most sense for our data set and objectives. With our goal of predicting a numerical value for annual salary, we knew we needed to use a compatible regression model. We found regression models for decision trees and random forests and wanted to compare their accuracy. We wanted to see how the accuracy of a single decision tree compares to the accuracy of a random forest model, which is a number of trees together. The results are detailed in the results and analysis section. Below are the implementation details of each model.

Decision tree model

We selected the DecisionTreeRegressor model from the Scikit Learn machine learning package. In order to get the most accurate model, we trained several models with different parameters and selected the one with the highest accuracy to validate. The parameter we changed was the maximum depth level of each tree. Additional factors that affect the model are the testing split percentage and the cross validation folds. For our models, we used 20% of the data as testing and 80% as training and a cross validation value of 10. Out of every combination we tried, we found that a maximum depth of ADD RES HERE resulted in the most accurate decision tree model. The accuracy of the model was ADD RES HERE. This model will output the tree itself, several statistics of the model such as R-squared, mean absolute error, and mean squared error, and the ten attributes that have the largest weight in determining the result. With the best model selected, we then validated it against the testing data set. These steps of model generation were done for both the US data and the European data.

Random forest model

We selected the RandomForestRegressor model from the Scikit Learn machine learning package. In order to get the most accurate model, we trained several models with different parameters and selected the one with the highest accuracy to validate. The parameters we changed were the number of trees to estimate with and the maximum depth level of each tree. Additional factors that affect the model are the testing split percentage and the cross validation folds. For our models, we used 20% of the data as testing and 80% as training and a cross validation value of 10. Out of every combination we tried, we found that ADD RES HERE trees in the forest with a maximum depth of ADD RES HERE resulted in the most accurate random forest model. The accuracy of the model was ADD RES HERE. This model will output the tree itself, several statistics of the model such as R-squared, mean absolute error, and mean squared error, and the ten attributes that have the largest weight in determining the result. With the best model selected, we then validated it against the testing data set. These steps of model generation were done for both the US data and the European data.

Results and Analysis

Authors

A Python package for the mathematical modeling of infectious diseases via compartmental models

A Python package for the mathematical modeling of infectious diseases via compartmental models. Originally designed for epidemiologists, epispot can be adapted for almost any type of modeling scenari

epispot 12 Dec 28, 2022
Universal data analysis tools for atmospheric sciences

U_analysis Universal data analysis tools for atmospheric sciences Script written in python 3. This file defines multiple functions that can be used fo

Luis Ackermann 1 Oct 10, 2021
ETL pipeline on movie data using Python and postgreSQL

Movies-ETL ETL pipeline on movie data using Python and postgreSQL Overview This project consisted on a automated Extraction, Transformation and Load p

Juan Nicolas Serrano 0 Jul 07, 2021
Top 50 best selling books on amazon

It's a dashboard that shows the detailed information about each book in the top 50 best selling books on amazon over the last ten years

Nahla Tarek 1 Nov 18, 2021
Intake is a lightweight package for finding, investigating, loading and disseminating data.

Intake: A general interface for loading data Intake is a lightweight set of tools for loading and sharing data in data science projects. Intake helps

Intake 851 Jan 01, 2023
Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python

Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python 📊

Thomas 2 May 26, 2022
track your GitHub statistics

GitHub-Stalker track your github statistics 👀 features find new followers or unfollowers find who got a star on your project or remove stars find who

Bahadır Araz 34 Nov 18, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
Supply a wrapper ``StockDataFrame`` based on the ``pandas.DataFrame`` with inline stock statistics/indicators support.

Stock Statistics/Indicators Calculation Helper VERSION: 0.3.2 Introduction Supply a wrapper StockDataFrame based on the pandas.DataFrame with inline s

Cedric Zhuang 1.1k Dec 28, 2022
Stream-Kafka-ELK-Stack - Weather data streaming using Apache Kafka and Elastic Stack.

Streaming Data Pipeline - Kafka + ELK Stack Streaming weather data using Apache Kafka and Elastic Stack. Data source: https://openweathermap.org/api O

Felipe Demenech Vasconcelos 2 Jan 20, 2022
Uses MIT/MEDSL, New York Times, and US Census datasources to analyze per-county COVID-19 deaths.

Covid County Executive summary Setup Install miniconda, then in the command line, run conda create -n covid-county conda activate covid-county conda i

Ahmed Fasih 1 Dec 22, 2021
A multi-platform GUI for bit-based analysis, processing, and visualization

A multi-platform GUI for bit-based analysis, processing, and visualization

Mahlet 529 Dec 19, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8k Dec 29, 2022
WAL enables programmable waveform analysis.

This repro introcudes the Waveform Analysis Language (WAL). The initial paper on WAL will appear at ASPDAC'22 and can be downloaded here: https://www.

Institute for Complex Systems (ICS), Johannes Kepler University Linz 40 Dec 13, 2022
Wafer Fault Detection - Wafer circleci with python

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

Avnish Yadav 14 Nov 21, 2022
Streamz helps you build pipelines to manage continuous streams of data

Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelines that involve branching, joining, flow control, feedbac

Python Streamz 1.1k Dec 28, 2022
talkbox is a scikit for signal/speech processing, to extend scipy capabilities in that domain.

talkbox is a scikit for signal/speech processing, to extend scipy capabilities in that domain.

David Cournapeau 76 Nov 30, 2022
Evidence enables analysts to deliver a polished business intelligence system using SQL and markdown.

Evidence enables analysts to deliver a polished business intelligence system using SQL and markdown

915 Dec 26, 2022
Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Data Scientist Learning Plan Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Trung-Duy Nguyen 27 Nov 01, 2022
collect training and calibration data for gaze tracking

Collect Training and Calibration Data for Gaze Tracking This tool allows collecting gaze data necessary for personal calibration or training of eye-tr

Pascal 5 Dec 17, 2022