Mining the Stack Overflow Developer Survey

Overview

Mining the Stack Overflow Developer Survey

A prototype data mining application to compare the accuracy of decision tree and random forest regression models to predict annual compensation of tech workers in the US and Europe.

Objectives

Usage

To run, download the repository and execute the file main.py in the src directory with your python path variable. For example, python3 main.py.

Dependencies

  • python 3.8.1 and up
  • pandas 1.3.4 and up
  • matplotlib 3.4.3 and up
  • numpy 1.21.0 and up
  • sklearn 1.0.1 and up

Methodology

Preprocessing

The original data set provided by Stack Overflow contained 48 attribute columns and 83439 data records. Due to the large size of the data set, we wanted to narrow our focus to a certain subset of the data. In the preprocessing of the original data file, we decided to discard any records that were not employed full-time in the technology industry. Any record that did not contain country, converted annual salary, or yeared coded was also discarded, as this data is vital to our model. We also discarded some of the columns from the original data set that were open-ended. Out of the records that fit our requirements, we exported them to two output csv files. Records of United States data were put together in one output file, and records of European countries were put in the other. Data from any other countries were discarded. Once we have the two cleaned files, we applied additional preprocessing techniques. Any missing attributes that remained were replaced with 'NA' if the attributes were nominal. Two special cases existed in the columns for years coded and years coded professionally. Most contained a numerical value for the years, but some had a string for 'Less than one year' and 'More than 50 years'. These strings were replaced with 0 and 50, respectively, to keep these columns numerical. With these preprocessing steps complete, the data files are now ready to be processed to generate the models.

Models

We evaluated a variety of data mining models and algorithms to find the ones that would make the most sense for our data set and objectives. With our goal of predicting a numerical value for annual salary, we knew we needed to use a compatible regression model. We found regression models for decision trees and random forests and wanted to compare their accuracy. We wanted to see how the accuracy of a single decision tree compares to the accuracy of a random forest model, which is a number of trees together. The results are detailed in the results and analysis section. Below are the implementation details of each model.

Decision tree model

We selected the DecisionTreeRegressor model from the Scikit Learn machine learning package. In order to get the most accurate model, we trained several models with different parameters and selected the one with the highest accuracy to validate. The parameter we changed was the maximum depth level of each tree. Additional factors that affect the model are the testing split percentage and the cross validation folds. For our models, we used 20% of the data as testing and 80% as training and a cross validation value of 10. Out of every combination we tried, we found that a maximum depth of ADD RES HERE resulted in the most accurate decision tree model. The accuracy of the model was ADD RES HERE. This model will output the tree itself, several statistics of the model such as R-squared, mean absolute error, and mean squared error, and the ten attributes that have the largest weight in determining the result. With the best model selected, we then validated it against the testing data set. These steps of model generation were done for both the US data and the European data.

Random forest model

We selected the RandomForestRegressor model from the Scikit Learn machine learning package. In order to get the most accurate model, we trained several models with different parameters and selected the one with the highest accuracy to validate. The parameters we changed were the number of trees to estimate with and the maximum depth level of each tree. Additional factors that affect the model are the testing split percentage and the cross validation folds. For our models, we used 20% of the data as testing and 80% as training and a cross validation value of 10. Out of every combination we tried, we found that ADD RES HERE trees in the forest with a maximum depth of ADD RES HERE resulted in the most accurate random forest model. The accuracy of the model was ADD RES HERE. This model will output the tree itself, several statistics of the model such as R-squared, mean absolute error, and mean squared error, and the ten attributes that have the largest weight in determining the result. With the best model selected, we then validated it against the testing data set. These steps of model generation were done for both the US data and the European data.

Results and Analysis

Authors

Repositori untuk menyimpan material Long Course STMKGxHMGI tentang Geophysical Python for Seismic Data Analysis

Long Course "Geophysical Python for Seismic Data Analysis" Instruktur: Dr.rer.nat. Wiwit Suryanto, M.Si Dipersiapkan oleh: Anang Sahroni Waktu: Sesi 1

Anang Sahroni 0 Dec 04, 2021
Data collection, enhancement, and metrics calculation.

l3_data_collection Data collection, enhancement, and metrics calculation. Summary Repository containing code for QuantDAO's JDT data collection task.

Ruiwyn 3 Dec 23, 2022
Important dataframe statistics with a single command

quick_eda Receiving dataframe statistics with one command Project description A python package for Data Scientists, Students, ML Engineers and anyone

Sven Eschlbeck 2 Dec 19, 2021
A data analysis using python and pandas to showcase trends in school performance.

A data analysis using python and pandas to showcase trends in school performance. A data analysis to showcase trends in school performance using Panda

Jimmy Faccioli 0 Sep 07, 2021
Python package for analyzing sensor-collected human motion data

Python package for analyzing sensor-collected human motion data

Simon Ho 71 Nov 05, 2022
LynxKite: a complete graph data science platform for very large graphs and other datasets.

LynxKite is a complete graph data science platform for very large graphs and other datasets. It seamlessly combines the benefits of a friendly graphical interface and a powerful Python API.

124 Dec 14, 2022
Tools for analyzing data collected with a custom unity-based VR for insects.

unityvr Tools for analyzing data collected with a custom unity-based VR for insects. Organization: The unityvr package contains the following submodul

Hannah Haberkern 1 Dec 14, 2022
Synthetic data need to preserve the statistical properties of real data in terms of their individual behavior and (inter-)dependences

Synthetic data need to preserve the statistical properties of real data in terms of their individual behavior and (inter-)dependences. Copula and functional Principle Component Analysis (fPCA) are st

32 Dec 20, 2022
Demonstrate a Dataflow pipeline that saves data from an API into BigQuery table

Overview dataflow-mvp provides a basic example pipeline that pulls data from an API and writes it to a BigQuery table using GCP's Dataflow (i.e., Apac

Chris Carbonell 1 Dec 03, 2021
An easy-to-use feature store

A feature store is a data storage system for data science and machine-learning. It can store raw data and also transformed features, which can be fed straight into an ML model or training script.

ByteHub AI 48 Dec 09, 2022
MotorcycleParts DataAnalysis python

We work with the accounting department of a company that sells motorcycle parts. The company operates three warehouses in a large metropolitan area.

NASEEM A P 1 Jan 12, 2022
Pizza Orders Data Pipeline Usecase Solved by SQL, Sqoop, HDFS, Hive, Airflow.

PizzaOrders_DataPipeline There is a Tony who is owning a New Pizza shop. He knew that pizza alone was not going to help him get seed funding to expand

Melwin Varghese P 4 Jun 05, 2022
Bamboolib - a GUI for pandas DataFrames

Community repository of bamboolib bamboolib is joining forces with Databricks. For more information, please read our announcement. Please note that th

Tobias Krabel 863 Jan 08, 2023
Hg002-qc-snakemake - HG002 QC Snakemake

HG002 QC Snakemake To Run Resources and data specified within snakefile (hg002QC

Juniper A. Lake 2 Feb 16, 2022
Full automated data pipeline using docker images

Create postgres tables from CSV files This first section is only relate to creating tables from CSV files using postgres container alone. Just one of

1 Nov 21, 2021
Semi-Automated Data Processing

Perform semi automated exploratory data analysis, feature engineering and feature selection on provided dataset by visualizing every possibilities on each step and assisting the user to make a meanin

Arun Singh Babal 1 Jan 17, 2022
Display the behaviour of a realtime program with a scope or logic analyser.

1. A monitor for realtime MicroPython code This library provides a means of examining the behaviour of a running system. It was initially designed to

Peter Hinch 17 Dec 05, 2022
Repository created with LinkedIn profile analysis project done

EN/en Repository created with LinkedIn profile analysis project done. The datase

Mayara Canaver 4 Aug 06, 2022
Nobel Data Analysis

Nobel_Data_Analysis This project is for analyzing a set of data about people who have won the Nobel Prize in different fields and different countries

Mohammed Hassan El Sayed 1 Jan 24, 2022
A multi-platform GUI for bit-based analysis, processing, and visualization

A multi-platform GUI for bit-based analysis, processing, and visualization

Mahlet 529 Dec 19, 2022