Wafer Fault Detection - Wafer circleci with python

Overview

Wafer Fault Detection

Problem Statement:

Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor,
such as a crystalline silicon (c-Si), used for fabricationof integrated circuits and in photovoltaics,
to manufacture solar cells.

The inputs of various sensors for different wafers have been provided.
The goal is to build a machine learning model which predicts whether a wafer needs to be replaced or not
(i.e whether it is working or not) nased on the inputs from various sensors.
There are two classes: +1 and -1.
+1: Means that the wafer is in a working condition and it doesn't need to be replaced.
-1: Means that the wafer is faulty and it needa to be replaced.

Data Description

The client will send data in multiple sets of files in batches at a given location.
Data will contain Wafer names and 590 columns of different sensor values for each wafer.
The last column will have the "Good/Bad" value for each wafer.

Apart from training files, we laso require a "schema" file from the client, which contain all the
relevant information about the training files such as:

Name of the files, Length of Date value in FileName, Length of Time value in FileName, NUmber of Columnns, 
Name of Columns, and their dataype.

Data Validation

In This step, we perform different sets of validation on the given set of training files.

Name Validation: We validate the name of the files based on the given name in the schema file. We have 
created a regex patterg as per the name given in the schema fileto use for validation. After validating 
the pattern in the name, we check for the length of the date in the file name as well as the length of time 
in the file name. If all the values are as per requirements, we move such files to "Good_Data_Folder" else
we move such files to "Bad_Data_Folder."

Number of Columns: We validate the number of columns present in the files, and if it doesn't match with the
value given in the schema file, then the file id moves to "Bad_Data_Folder."

Name of Columns: The name of the columns is validated and should be the same as given in the schema file. 
If not, then the file is moved to "Bad_Data_Folder".

The datatype of columns: The datatype of columns is given in the schema file. This is validated when we insert
the files into Database. If the datatype is wrong, then the file is moved to "Bad_Data_Folder."

Null values in columns: If any of the columns in a file have all the values as NULL or missing, we discard such
a file and move it to "Bad_Data_Folder".

Data Insertion in Database

 Database Creation and Connection: Create a database with the given name passed. If the database is already created,
 open the connection to the database.
 
 Table creation in the database: Table with name - "Good_Data", is created in the database for inserting the files 
 in the "Good_Data_Folder" based on given column names and datatype in the schema file. If the table is already
 present, then the new table is not created and new files are inserted in the already present table as we want 
 training to be done on new as well as old training files.
 
 Insertion of file in the table: All the files in the "Good_Data_Folder" are inserted in the above-created table. If
 any file has invalid data type in any of the columns, the file is not loaded in the table and is moved to 
 "Bad_Data_Folder".

Model Training

 Data Export from Db: The data in a stored database is exported as a CSV file to be used for model training.
 
 Data Preprocessing: 
    Check for null values in the columns. If present, impute the null values using the KNN imputer.
    
    Check if any column has zero standard deviation, remove such columns as they don't give any information during 
    model training.
    
 Clustering: KMeans algorithm is used to create clusters in the preprocessed data. The optimum number of clusters 
 is selected

Create a file "Dockerfile" with below content

FROM python:3.7
COPY . /app
WORKDIR /app
RUN pip install -r requirements.txt
ENTRYPOINT [ "python" ]
CMD [ "main.py" ]

Create a "Procfile" with following content

web: gunicorn main:app

create a file ".circleci\config.yml" with following content

> $BASH_ENV echo 'export IMAGE_NAME=python-circleci-docker' >> $BASH_ENV python3 -m venv venv . venv/bin/activate pip install --upgrade pip pip install -r requirements.txt - save_cache: key: deps1-{{ .Branch }}-{{ checksum "requirements.txt" }} paths: - "venv" - run: command: | . venv/bin/activate python -m pytest -v tests/test_script.py - store_artifacts: path: test-reports/ destination: tr1 - store_test_results: path: test-reports/ - setup_remote_docker: version: 19.03.13 - run: name: Build and push Docker image command: | docker build -t $DOCKERHUB_USER/$IMAGE_NAME:$TAG . docker login -u $DOCKERHUB_USER -p $DOCKER_HUB_PASSWORD_USER docker.io docker push $DOCKERHUB_USER/$IMAGE_NAME:$TAG deploy: executor: heroku/default steps: - checkout - run: name: Storing previous commit command: | git rev-parse HEAD > ./commit.txt - heroku/install - setup_remote_docker: version: 18.06.0-ce - run: name: Pushing to heroku registry command: | heroku container:login #heroku ps:scale web=1 -a $HEROKU_APP_NAME heroku container:push web -a $HEROKU_APP_NAME heroku container:release web -a $HEROKU_APP_NAME workflows: build-test-deploy: jobs: - build-and-test - deploy: requires: - build-and-test filters: branches: only: - main ">
version: 2.1
orbs:
  heroku: circleci/[email protected]
jobs:
  build-and-test:
    executor: heroku/default
    docker:
      - image: circleci/python:3.6.2-stretch-browsers
        auth:
          username: mydockerhub-user
          password: $DOCKERHUB_PASSWORD  # context / project UI env-var reference
    steps:
      - checkout
      - restore_cache:
          key: deps1-{{ .Branch }}-{{ checksum "requirements.txt" }}
      - run:
          name: Install Python deps in a venv
          command: |
            echo 'export TAG=0.1.${CIRCLE_BUILD_NUM}' >> $BASH_ENV
            echo 'export IMAGE_NAME=python-circleci-docker' >> $BASH_ENV
            python3 -m venv venv
            . venv/bin/activate
            pip install --upgrade pip
            pip install -r requirements.txt
      - save_cache:
          key: deps1-{{ .Branch }}-{{ checksum "requirements.txt" }}
          paths:
            - "venv"
      - run:
          command: |
            . venv/bin/activate
            python -m pytest -v tests/test_script.py
      - store_artifacts:
          path: test-reports/
          destination: tr1
      - store_test_results:
          path: test-reports/
      - setup_remote_docker:
          version: 19.03.13
      - run:
          name: Build and push Docker image
          command: |
            docker build -t $DOCKERHUB_USER/$IMAGE_NAME:$TAG .
            docker login -u $DOCKERHUB_USER -p $DOCKER_HUB_PASSWORD_USER docker.io
            docker push $DOCKERHUB_USER/$IMAGE_NAME:$TAG
  deploy:
    executor: heroku/default
    steps:
      - checkout
      - run:
          name: Storing previous commit
          command: |
            git rev-parse HEAD > ./commit.txt
      - heroku/install
      - setup_remote_docker:
          version: 18.06.0-ce
      - run:
          name: Pushing to heroku registry
          command: |
            heroku container:login
            #heroku ps:scale web=1 -a $HEROKU_APP_NAME
            heroku container:push web -a $HEROKU_APP_NAME
            heroku container:release web -a $HEROKU_APP_NAME

workflows:
  build-test-deploy:
    jobs:
      - build-and-test
      - deploy:
          requires:
            - build-and-test
          filters:
            branches:
              only:
                - main

to create requirements.txt

pip freeze>requirements.txt

initialize git repo

git push -u origin main ">
git init
git add .
git commit -m "first commit"
git branch -M main
git remote add origin 
   
    
git push -u origin main

   

create a account at circle ci

Circle CI

setup your project

Setup project

Select project setting in CircleCI and below environment variable

DOCKERHUB_USER
DOCKER_HUB_PASSWORD_USER
HEROKU_API_KEY
HEROKU_APP_NAME
HEROKU_EMAIL_ADDRESS
DOCKER_IMAGE_NAME=wafercircle3270303

to update the modification

git add .
git commit -m "proper message"
git push 
Owner
Avnish Yadav
Avnish Yadav
A Big Data ETL project in PySpark on the historical NYC Taxi Rides data

Processing NYC Taxi Data using PySpark ETL pipeline Description This is an project to extract, transform, and load large amount of data from NYC Taxi

Unnikrishnan 2 Dec 12, 2021
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8k Dec 29, 2022
PySpark Structured Streaming ROS Kafka ApacheSpark Cassandra

PySpark-Structured-Streaming-ROS-Kafka-ApacheSpark-Cassandra The purpose of this project is to demonstrate a structured streaming pipeline with Apache

Zekeriyya Demirci 5 Nov 13, 2022
Python scripts aim to use a Random Forest machine learning algorithm to predict the water affinity of Metal-Organic Frameworks

The following Python scripts aim to use a Random Forest machine learning algorithm to predict the water affinity of Metal-Organic Frameworks (MOFs). The training set is extracted from the Cambridge S

1 Jan 09, 2022
Hydrogen (or other pure gas phase species) depressurization calculations

HydDown Hydrogen (or other pure gas phase species) depressurization calculations This code is published under an MIT license. Install as simple as: pi

Anders Andreasen 13 Nov 26, 2022
A tax calculator for stocks and dividends activities.

Revolut Stocks calculator for Bulgarian National Revenue Agency Information Processing and calculating the required information about stock possession

Doino Gretchenliev 200 Oct 25, 2022
Detecting Underwater Objects (DUO)

Underwater object detection for robot picking has attracted a lot of interest. However, it is still an unsolved problem due to several challenges. We take steps towards making it more realistic by ad

27 Dec 12, 2022
pandas: powerful Python data analysis toolkit

pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive.

pandas 36.4k Jan 03, 2023
Tools for analyzing data collected with a custom unity-based VR for insects.

unityvr Tools for analyzing data collected with a custom unity-based VR for insects. Organization: The unityvr package contains the following submodul

Hannah Haberkern 1 Dec 14, 2022
Working Time Statistics of working hours and working conditions by industry and company

Working Time Statistics of working hours and working conditions by industry and company

Feng Ruohang 88 Nov 04, 2022
Tools for working with MARC data in Catalogue Bridge.

catbridge_tools Tools for working with MARC data in Catalogue Bridge. Borrows heavily from PyMarc

1 Nov 11, 2021
Toolchest provides APIs for scientific and bioinformatic data analysis.

Toolchest Python Client Toolchest provides APIs for scientific and bioinformatic data analysis. It allows you to abstract away the costliness of runni

Toolchest 11 Jun 30, 2022
Spectacular AI SDK fuses data from cameras and IMU sensors and outputs an accurate 6-degree-of-freedom pose of a device.

Spectacular AI SDK examples Spectacular AI SDK fuses data from cameras and IMU sensors (accelerometer and gyroscope) and outputs an accurate 6-degree-

Spectacular AI 94 Jan 04, 2023
Scraping and analysis of leetcode-compensations page.

Leetcode compensations report Scraping and analysis of leetcode-compensations page.

utsav 96 Jan 01, 2023
[CVPR2022] This repository contains code for the paper "Nested Collaborative Learning for Long-Tailed Visual Recognition", published at CVPR 2022

Nested Collaborative Learning for Long-Tailed Visual Recognition This repository is the official PyTorch implementation of the paper in CVPR 2022: Nes

Jun Li 65 Dec 09, 2022
Conduits - A Declarative Pipelining Tool For Pandas

Conduits - A Declarative Pipelining Tool For Pandas Traditional tools for declaring pipelines in Python suck. They are mostly imperative, and can some

Kale Miller 7 Nov 21, 2021
This is a repo documenting the best practices in PySpark.

Spark-Syntax This is a public repo documenting all of the "best practices" of writing PySpark code from what I have learnt from working with PySpark f

Eric Xiao 447 Dec 25, 2022
follow-analyzer helps GitHub users analyze their following and followers relationship

follow-analyzer follow-analyzer helps GitHub users analyze their following and followers relationship by providing a report in html format which conta

Yin-Chiuan Chen 2 May 02, 2022
AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures.

AptaMAT Purpose AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures. The method is based on the compa

GEC UTC 3 Nov 03, 2022
Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Data Scientist Learning Plan Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Trung-Duy Nguyen 27 Nov 01, 2022