In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift.

Overview

ETL Pipeline for AWS

Project Description

In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift. The data is loaded from S3 to stagging tables on Redshift and SQL queries are written to create analytics tables from staging tables.

Dataset Structure

The dataset is composed of two files the Songs data and Logs data that is present in S3 bucket.

Song Data

The song data is dataset with million of entries. Each file is in JSON format that contains the data about song, artist of that song. Moreover, the files are partitioned by the first three letters of song ID. The single entry of the song dataset looks like

  • {
       "num_songs":1,
       "artist_id":"ARJIE2Y1187B994AB7",
       "artist_latitude":null,
       "artist_longitude":null,
       "artist_location":"",
       "artist_name":"Line Renaud",
       "song_id":"SOUPIRU12A6D4FA1E1",
       "title":"Der Kleine Dompfaff",
       "duration":152.92036,
       "year":0
    }
    

The second dataset consists of log files in JSON format generated by this event simulator based on the songs in the dataset above. These simulate app activity logs from an imaginary music streaming app based on configuration settings.

Logs Data

The logs dataset is also in the JSON formatted, which is formed by the event simulator based on the songs dataset. The logs dataset is the activity logs from the music app.

  • {
        "artist": "Pavement",
        "auth": "Logged in",
        "firstName": "Sylvie",
        "gender": "F",
        "iteminSession": 0,
        "lastName": "Cruz",
        "length": 99.16036,
        "level": "free",
        "location": "Kiamath Falls, OR",
        "method": "PUT",
        "page": "NextSong",
        "registration": 1.540266e+12,
        "sessionId": 345,
        "song": "Mercy: The Laundromat",
        "status": 200,
        "ts": 1541990258796,
        "userAgent": "Mozzilla/5.0...",
        "userId": 10
    }
    

Data Warehouse schema

There are two staging tables: Event table: artist VARCHAR, auth VARCHAR, firstName VARCHAR, gender VARCHAR, itemInSession INT, lastName VARCHAR, length DOUBLE PRECISION, level VARCHAR, location VARCHAR, method VARCHAR , page VARCHAR, registration VARCHAR, sessionid INT, song VARCHAR, status INT, ts VARCHAR, userAgent VARCHAR, userId INT*

Song table* num_songs INTEGER,* artist_id VARCHAR, artist_latitude VARCHAR, artist_longitude VARCHAR, artist_location VARCHAR , artist_name VARCHAR, song_id VARCHAR, title VARCHAR, duration NUMERIC NOT NULL, year integer*

These staging tables helps forming dimension tables and fact tables:

Dimension Tables:
users:
*user_id, first_name, last_name, gender, level*
songs:
*song_id, title, artist_id, year, duration*
artists:
*artist_id, name, location, latitude, longitude*
time:
*start_time, hour, day, week, month, year, weekday*
Fact tables:
Songplays:
*songplay_id, start_time, user_id, level, song_id, artist_id, session_id, location, user_agent*

All the tables contains Primary Key as there should be something unique to identify the rows in the table.

ETL Process

The ETL process is comprises of two steps:

  • Getting data from S3 bucket to staging table
  • Insert the data in dimension and fact table from staging tables using Star Schema

Files Description

- create_tables.py: When create_tables.py run, it will first create tables and drop if table already exists. 
- etl.py: read and process data files
- dwh.cfg: File contains the data warehouse settings for AWS. It contains CLUSTER, IAM_ROLE and S3 settings for the ETL pipeline
- sql_queries: Contains the sql queries for dropping, creation, selection data from tables.
Owner
Mobeen Ahmed
Mobeen Ahmed
A Python package for modular causal inference analysis and model evaluations

Causal Inference 360 A Python package for inferring causal effects from observational data. Description Causal inference analysis enables estimating t

International Business Machines 506 Dec 19, 2022
Active Learning demo using two small datasets

ActiveLearningDemo How to run step one put the dataset folder and use command below to split the dataset to the required structure run utils.py For ea

3 Nov 10, 2021
Very basic but functional Kakuro solver written in Python.

kakuro.py Very basic but functional Kakuro solver written in Python. It uses a reduction to exact set cover and Ali Assaf's elegant implementation of

Louis Abraham 4 Jan 15, 2022
PATC: Introduction to Big Data Analytics. Practical Data Analytics for Solving Real World Problems

PATC: Introduction to Big Data Analytics. Practical Data Analytics for Solving Real World Problems

1 Feb 07, 2022
Analyzing Covid-19 Outbreaks in Ontario

My group and I took Covid-19 outbreak statistics from ontario, and analyzed them to find different patterns and future predictions for the virus

Vishwaajeeth Kamalakkannan 0 Jan 20, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 09, 2023
Template for a Dataflow Flex Template in Python

Dataflow Flex Template in Python This repository contains a template for a Dataflow Flex Template written in Python that can easily be used to build D

STOIX 5 Apr 28, 2022
This repo is dedicated to the data extraction and manipulation of the World Bank's database called STEP.

Overview Welcome to the Step-X repository. This repo is dedicated to the data extraction and manipulation of the World Bank's database called STEP. Be

Keanu Pang 0 Jan 20, 2022
Mining the Stack Overflow Developer Survey

Mining the Stack Overflow Developer Survey A prototype data mining application to compare the accuracy of decision tree and random forest regression m

1 Nov 16, 2021
Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Binomial Option Pricing Calculator Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required) Background A derivative is a fi

sammuhrai 1 Nov 29, 2021
Pizza Orders Data Pipeline Usecase Solved by SQL, Sqoop, HDFS, Hive, Airflow.

PizzaOrders_DataPipeline There is a Tony who is owning a New Pizza shop. He knew that pizza alone was not going to help him get seed funding to expand

Melwin Varghese P 4 Jun 05, 2022
A Big Data ETL project in PySpark on the historical NYC Taxi Rides data

Processing NYC Taxi Data using PySpark ETL pipeline Description This is an project to extract, transform, and load large amount of data from NYC Taxi

Unnikrishnan 2 Dec 12, 2021
Single-Cell Analysis in Python. Scales to >1M cells.

Scanpy – Single-Cell Analysis in Python Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata. It inc

Theis Lab 1.4k Jan 05, 2023
This repo contains a simple but effective tool made using python which can be used for quality control in statistical approach.

This repo contains a powerful tool made using python which is used to visualize, analyse and finally assess the quality of the product depending upon the given observations

SasiVatsal 8 Oct 18, 2022
Basis Set Format Converter

Basis Set Format Converter Repository for the online tool that allows you to enter a basis set in the form of text input for a variety of Quantum Chem

Manas Sharma 3 Jun 27, 2022
Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

1 Feb 11, 2022
A tool to compare differences between dataframes and create a differences report in Excel

similarpanda A module to check for differences between pandas Dataframes, and generate a report in Excel format. This is helpful in a workplace settin

Andre Pretorius 9 Sep 15, 2022
statDistros is a Python library for dealing with various statistical distributions

StatisticalDistributions statDistros statDistros is a Python library for dealing with various statistical distributions. Now it provides various stati

1 Oct 03, 2021
BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings.

BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings. it also can assist the binary code analysis rese

BinTuner 42 Dec 16, 2022
PandaPy has the speed of NumPy and the usability of Pandas 10x to 50x faster (by @firmai)

PandaPy "I came across PandaPy last week and have already used it in my current project. It is a fascinating Python library with a lot of potential to

Derek Snow 527 Jan 02, 2023