ForecastGA is a Python tool to forecast Google Analytics data using several popular time series models.

Overview

ForecastGA

A Python tool to forecast GA data using several popular time series models.

Open In Colab

Logo for ForecastGA

About

Welcome to ForecastGA

ForecastGA is a tool that combines a couple of popular libraries, Atspy and googleanalytics, with a few enhancements.

  • The models are made more intuitive to upgrade and add by having the tool logic separate from the model training and prediction.
  • When calling am.forecast_insample(), any kwargs included (e.g. learning_rate) are passed to the train method of the model.
  • Google Analytics profiles are specified by simply passing the URL (e.g. https://analytics.google.com/analytics/web/?authuser=2#/report-home/aXXXXXwXXXXXpXXXXXX).
  • You can provide a data dict with GA config options or a Pandas Series as the input data.
  • Multiple log levels.
  • Auto GPU detection (via Torch).
  • List all available models, with descriptions, by calling forecastga.print_model_info().
  • Google API info can be passed in the data dict or uploaded as a JSON file named identity.json.
  • Created a companion Google Colab notebook to easily run on GPU.
  • A handy plot function for Colab, forecastga.plot_colab(forecast_in, title="Insample Forecast", dark_mode=True) that formats nicely and also handles Dark Mode!

Models Available

  • ARIMA : Automated ARIMA Modelling
  • Prophet : Modeling Multiple Seasonality With Linear or Non-linear Growth
  • ProphetBC : Prophet Model with Box-Cox transform of the data
  • HWAAS : Exponential Smoothing With Additive Trend and Additive Seasonality
  • HWAMS : Exponential Smoothing with Additive Trend and Multiplicative Seasonality
  • NBEATS : Neural basis expansion analysis (now fixed at 20 Epochs)
  • Gluonts : RNN-based Model (now fixed at 20 Epochs)
  • TATS : Seasonal and Trend no Box Cox
  • TBAT : Trend and Box Cox
  • TBATS1 : Trend, Seasonal (one), and Box Cox
  • TBATP1 : TBATS1 but Seasonal Inference is Hardcoded by Periodicity
  • TBATS2 : TBATS1 With Two Seasonal Periods

How To Use

Find Model Info:

forecastga.print_model_info()

Initialize Model:

Google Analytics:
data = { 'client_id': '',
         'client_secret': '',
         'identity': '',
         'ga_start_date': '2018-01-01',
         'ga_end_date': '2019-12-31',
         'ga_metric': 'sessions',
         'ga_segment': 'organic traffic',
         'ga_url': 'https://analytics.google.com/analytics/web/?authuser=2#/report-home/aXXXXXwXXXXXpXXXXXX',
         'omit_values_over': 2000000
        }

model_list = ["TATS", "TBATS1", "TBATP1", "TBATS2", "ARIMA"]
am = forecastga.AutomatedModel(data , model_list=model_list, forecast_len=30 )
Pandas DataFrame:
# CSV with columns: Date and Sessions
df = pd.read_csv('ga_sessions.csv')
df.Date = pd.to_datetime(df.Date)
df = df.set_index("Date")
data = df.Sessions

model_list = ["TATS", "TBATS1", "TBATP1", "TBATS2", "ARIMA"]
am = forecastga.AutomatedModel(data , model_list=model_list, forecast_len=30 )

Forecast Insample:

forecast_in, performance = am.forecast_insample()

Forecast Outsample:

forecast_out = am.forecast_outsample()

Ensemble Performance:

all_ensemble_in, all_ensemble_out, all_performance = am.ensemble(forecast_in, forecast_out)

Pretty Plot in Google Colab

forecastga.plot_colab(forecast_in, title="Insample Forecast", dark_mode=True)

Installation

Windows users may need to manually install the two items below via conda :

  1. conda install pystan
  2. conda install pytorch -c pytorch
  3. !pip install --upgrade git+https://github.com/jroakes/ForecastGA.git

otherwise, pip install --upgrade forecastga

This repo support GPU training. Below are a few libraries that may have to be manually installed to support.

pip install --upgrade mxnet-cu101
pip install --upgrade torch 1.7.0+cu101

Acknowledgements

  1. Majority of forecasting code taken from https://github.com/firmai/atspy and refactored heavily.
  2. Google Analytics based off of: https://github.com/debrouwere/google-analytics
  3. Thanks to richardfergie for the addition of the Prophet Box-Cox model to control negative predictions.

Contribute

The goal of this repo is to grow the list of available models to test. If you would like to contribute one please read on. Feel free to have fun naming your models.

  1. Fork the repo.
  2. In the /src/forecastga/models folder there is a model called template.py. You can use this as a template for creating your new model. All available variables are there. Forecastga ensures each model has the right data and calls only the train and forecast methods for each model. Feel free to add additional methods that your model requires.
  3. Edit the /src/forecastga/models/__init__.py file to add your model's information. Follow the format of the other entries. Forecastga relies on loc to find the model and class to find the class to use.
  4. Edit requirments.txt with any additional libraries needed to run your model. Keep in mind that this repo should support GPU training if available and some libraries have separate GPU-enabled versions.
  5. Issue a pull request.

If you enjoyed this tool consider buying me some beer at: Paypalme

Owner
JR Oakes
Hacker, SEO, NC State fan, co-organizer of Raleigh and RTP Meetups, as well as @sengineland author. Tweets are my own.
JR Oakes
Useful tool for inserting DataFrames into the Excel sheet.

PyCellFrame Insert Pandas DataFrames into the Excel sheet with a bunch of conditions Install pip install pycellframe Usage Examples Let's suppose that

Luka Sosiashvili 1 Feb 16, 2022
VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

André Rodrigues 2 Feb 14, 2022
Spectral Analysis in Python

SPECTRUM : Spectral Analysis in Python contributions: Please join https://github.com/cokelaer/spectrum contributors: https://github.com/cokelaer/spect

Thomas Cokelaer 280 Dec 16, 2022
A columnar data container that can be compressed.

Unmaintained Package Notice Unfortunately, and due to lack of resources, the Blosc Development Team is unable to maintain this package anymore. During

944 Dec 09, 2022
Package for decomposing EMG signals into motor unit firings, as used in Formento et al 2021.

EMGDecomp Package for decomposing EMG signals into motor unit firings, created for Formento et al 2021. Based heavily on Negro et al, 2016. Supports G

13 Nov 01, 2022
Fancy data functions that will make your life as a data scientist easier.

WhiteBox Utilities Toolkit: Tools to make your life easier Fancy data functions that will make your life as a data scientist easier. Installing To ins

WhiteBox 3 Oct 03, 2022
Python-based Space Physics Environment Data Analysis Software

pySPEDAS pySPEDAS is an implementation of the SPEDAS framework for Python. The Space Physics Environment Data Analysis Software (SPEDAS) framework is

SPEDAS 98 Dec 22, 2022
A multi-platform GUI for bit-based analysis, processing, and visualization

A multi-platform GUI for bit-based analysis, processing, and visualization

Mahlet 529 Dec 19, 2022
Kennedy Institute of Rheumatology University of Oxford Project November 2019

TradingBot6M Kennedy Institute of Rheumatology University of Oxford Project November 2019 Run Change api.txt to binance api key: https://www.binance.c

Kannan SAR 2 Nov 16, 2021
A Python module for clustering creators of social media content into networks

sm_content_clustering A Python module for clustering creators of social media content into networks. Currently supports identifying potential networks

72 Dec 30, 2022
Demonstrate a Dataflow pipeline that saves data from an API into BigQuery table

Overview dataflow-mvp provides a basic example pipeline that pulls data from an API and writes it to a BigQuery table using GCP's Dataflow (i.e., Apac

Chris Carbonell 1 Dec 03, 2021
Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

1 Feb 11, 2022
Big Data & Cloud Computing for Oceanography

DS2 Class 2022, Big Data & Cloud Computing for Oceanography Home of the 2022 ISblue Big Data & Cloud Computing for Oceanography class (IMT-A, ENSTA, I

Ocean's Big Data Mining 5 Mar 19, 2022
My first Python project is a simple Mad Libs program.

Python CLI Mad Libs Game My first Python project is a simple Mad Libs program. Mad Libs is a phrasal template word game created by Leonard Stern and R

Carson Johnson 1 Dec 10, 2021
Containerized Demo of Apache Spark MLlib on a Data Lakehouse (2022)

Spark-DeltaLake-Demo Reliable, Scalable Machine Learning (2022) This project was completed in an attempt to become better acquainted with the latest b

8 Mar 21, 2022
Investigating EV charging data

Investigating EV charging data Introduction: Got an opportunity to work with a home monitoring technology company over the last 6 months whose goal wa

Yash 2 Apr 07, 2022
Elasticsearch tool for easily collecting and batch inserting Python data and pandas DataFrames

ElasticBatch Elasticsearch buffer for collecting and batch inserting Python data and pandas DataFrames Overview ElasticBatch makes it easy to efficien

Dan Kaslovsky 21 Mar 16, 2022
Bamboolib - a GUI for pandas DataFrames

Community repository of bamboolib bamboolib is joining forces with Databricks. For more information, please read our announcement. Please note that th

Tobias Krabel 863 Jan 08, 2023
Provide a market analysis (R)

market-study Provide a market analysis (R) - FRENCH Produisez une étude de marché Prérequis Pour effectuer ce projet, vous devrez maîtriser la manipul

1 Feb 13, 2022
Improving your data science workflows with

Make Better Defaults Author: Kjell Wooding [email protected] This is the git re

Kjell Wooding 18 Dec 23, 2022