Important dataframe statistics with a single command

Overview

quick_eda

Receiving dataframe statistics with one command


GitHub code size in bytes GitHub top language GitHub PyPI PyPI - Status


Project description

A python package for Data Scientists, Students, ML Engineers and anyone who wants dataframe meta data without the trouble of having to type in numerous commands.

Installation

Use pip to install quick-eda by typing or copying the following command.

pip install quick-eda

License

This package is licensed under BSD Clause 3.

Example usage

Users of the package can import the individual modules from this package, for example:

import quick_eda.df_eda
import quick_eda.column_eda

This loads the submodules quick_eda.df_eda and quick_eda.column_eda. They must be referenced with their full name.

quick_eda.df_eda.df_eda(<df>)
quick_eda.column_eda.column_eda(<column_name>)

An alternative way of importing the submodules is:

from quick_eda import df_eda
from quick_eda import column_eda

This also loads the submodules quick_eda.df_eda and quick_eda.column_eda, and makes them available without their prefix, so they can be used as follows:

df_eda.df_eda(<df>)
column_eda.column_eda(<column_name>)

Yet another variation is to import the desired functions directly:

from quick_eda.df_eda import df_eda
from quick_eda.column_eda import column_eda

Again, this loads the submodules, but makes them directly available:

df_eda(<df>)
column_eda(<column_name>)

Imagine you have a dataframe called pets with the columns name, age and color. You could then run statistics on both the entire dataframe or e.g. the column age with

df_eda(pets)
column_eda(pets, "age")

Source code & further information

The source code is maintained at https://github.com/sveneschlbeck/quick_eda
There are also further information concerning the BSD license model, contributing guidelines and more...

Owner
Sven Eschlbeck
"The more I C, the less I see."
Sven Eschlbeck
ASTR 302: Python for Astronomy (Winter '22)

ASTR 302, Winter 2022, University of Washington: Python for Astronomy Mario Jurić Location When: 2:30-3:50, Monday & Wednesday, Winter quarter 2022 Wh

UW ASTR 302: Python for Astronomy 4 Jan 12, 2022
A collection of robust and fast processing tools for parsing and analyzing web archive data.

ChatNoir Resiliparse A collection of robust and fast processing tools for parsing and analyzing web archive data. Resiliparse is part of the ChatNoir

ChatNoir 24 Nov 29, 2022
Autopsy Module to analyze Registry Hives based on bookmarks provided by EricZimmerman for his tool RegistryExplorer

Autopsy Module to analyze Registry Hives based on bookmarks provided by EricZimmerman for his tool RegistryExplorer

Mohammed Hassan 13 Mar 31, 2022
Python beta calculator that retrieves stock and market data and provides linear regressions.

Stock and Index Beta Calculator Python script that calculates the beta (β) of a stock against the chosen index. The script retrieves the data and resa

sammuhrai 4 Jul 29, 2022
This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

1 Dec 28, 2021
:truck: Agile Data Preparation Workflows made easy with dask, cudf, dask_cudf and pyspark

To launch a live notebook server to test optimus using binder or Colab, click on one of the following badges: Optimus is the missing framework to prof

Iron 1.3k Dec 30, 2022
A Pythonic introduction to methods for scaling your data science and machine learning work to larger datasets and larger models, using the tools and APIs you know and love from the PyData stack (such as numpy, pandas, and scikit-learn).

This tutorial's purpose is to introduce Pythonistas to methods for scaling their data science and machine learning work to larger datasets and larger models, using the tools and APIs they know and lo

Coiled 102 Nov 10, 2022
Python for Data Analysis, 2nd Edition

Python for Data Analysis, 2nd Edition Materials and IPython notebooks for "Python for Data Analysis" by Wes McKinney, published by O'Reilly Media Buy

Wes McKinney 18.6k Jan 08, 2023
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
Exploratory data analysis

Exploratory data analysis An Exploratory data analysis APP TAPIWA CHAMBOKO 🚀 About Me I'm a full stack developer experienced in deploying artificial

tapiwa chamboko 1 Nov 07, 2021
Helper tools to construct probability distributions built from expert elicited data for use in monte carlo simulations.

Elicited Helper tools to construct probability distributions built from expert elicited data for use in monte carlo simulations. Credit to Brett Hoove

Ryan McGeehan 3 Nov 04, 2022
Extract Thailand COVID-19 Cluster data from daily briefing pdf.

Thailand COVID-19 Cluster Data Extraction About Extract Clusters from Thailand Daily COVID-19 briefing PDF Download latest data Here. Data will be upd

Noppakorn Jiravaranun 5 Sep 27, 2021
Very useful and necessary functions that simplify working with data

Additional-function-for-pandas Very useful and necessary functions that simplify working with data random_fill_nan(module_name, nan) - Replaces all sp

Alexander Goldian 2 Dec 02, 2021
Stitch together Nanopore tiled amplicon data without polishing a reference

Stitch together Nanopore tiled amplicon data using a reference guided approach Tiled amplicon data, like those produced from primers designed with pri

Amanda Warr 14 Aug 30, 2022
OpenARB is an open source program aiming to emulate a free market while encouraging players to participate in arbitrage in order to increase working capital.

Overview OpenARB is an open source program aiming to emulate a free market while encouraging players to participate in arbitrage in order to increase

Tom 3 Feb 12, 2022
Synthetic data need to preserve the statistical properties of real data in terms of their individual behavior and (inter-)dependences

Synthetic data need to preserve the statistical properties of real data in terms of their individual behavior and (inter-)dependences. Copula and functional Principle Component Analysis (fPCA) are st

32 Dec 20, 2022
Collections of pydantic models

pydantic-collections The pydantic-collections package provides BaseCollectionModel class that allows you to manipulate collections of pydantic models

Roman Snegirev 20 Dec 26, 2022
Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle.

2019-indian-election-eda Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle. This project is a part of the Cou

Souradeep Banerjee 5 Oct 10, 2022
A stock analysis app with streamlit

StockAnalysisApp A stock analysis app with streamlit. You select the ticker of the stock and the app makes a series of analysis by using the price cha

Antonio Catalano 50 Nov 27, 2022
Pizza Orders Data Pipeline Usecase Solved by SQL, Sqoop, HDFS, Hive, Airflow.

PizzaOrders_DataPipeline There is a Tony who is owning a New Pizza shop. He knew that pizza alone was not going to help him get seed funding to expand

Melwin Varghese P 4 Jun 05, 2022