Python package for analyzing sensor-collected human motion data

Overview

Installation | Requirements | Usage | Contribution | Getting Help

Sensor Motion

PyPI - Python Version PyPI GitHub issues https://readthedocs.org/projects/sensormotion/badge/?version=latest https://badges.gitter.im/gitterHQ/gitter.png

Python package for analyzing sensor-collected human motion data (e.g. physical activity levels, gait dynamics).

Dedicated accelerometer devices, such as those made by Actigraph, usually bundle software for the analysis of the sensor data. In my work I often collect sensor data from smartphones and have not been able to find any comparable analysis software.

This Python package allows the user to extract human motion data, such as gait/walking dynamics, directly from accelerometer signals. Additionally, the package allows for the calculation of physical activity (PA) or moderate-to-vigorous physical activity (MVPA) counts, similar to activity count data offered by companies like Actigraph.

Installation

You can install this package using pip:

pip install sensormotion

Requirements

This package has the following dependencies, most of which are just Python packages:

  • Python 3.x
    • The easiest way to install Python is using the Anaconda distribution, as it also includes the other dependencies listed below
    • Python 2.x has not been tested, so backwards compatibility is not guaranteed
  • numpy
    • Included with Anaconda. Otherwise, install using pip (pip install numpy)
  • scipy
    • Included with Anaconda. Otherwise, install using pip (pip install scipy)
  • matplotlib
    • Included with Anaconda. Otherwise, install using pip (pip install matplotlib)

Usage

Here is brief example of extracting step-based metrics from raw vertical acceleration data:

Import the package:

import sensormotion as sm

If you have a vertical acceleration signal x, and its corresponding time signal t, we can begin by filtering the signal using a low-pass filter:

b, a = sm.signal.build_filter(frequency=10,
                              sample_rate=100,
                              filter_type='low',
                              filter_order=4)

x_filtered = sm.signal.filter_signal(b, a, signal=x)

images/filter.png

Next, we can detect the peaks (or valleys) in the filtered signal, which gives us the time and value of each detection. Optionally, we can include a plot of the signal and detected peaks/valleys:

peak_times, peak_values = sm.peak.find_peaks(time=t, signal=x_filtered,
                                             peak_type='valley',
                                             min_val=0.6, min_dist=30,
                                             plot=True)

images/peak_detection.png

From the detected peaks, we can then calculate step metrics like cadence and step time:

cadence = sm.gait.cadence(time=t, peak_times=peak_times, time_units='ms')
step_mean, step_sd, step_cov = sm.gait.step_time(peak_times=peak_times)

Physical activity counts and intensities can also be calculated from the acceleration data:

x_counts = sm.pa.convert_counts(x, time, integrate='simpson')
y_counts = sm.pa.convert_counts(y, time, integrate='simpson')
z_counts = sm.pa.convert_counts(z, time, integrate='simpson')
vm = sm.signal.vector_magnitude(x_counts, y_counts, z_counts)
categories, time_spent = sm.pa.cut_points(vm, set_name='butte_preschoolers', n_axis=3)

images/pa_counts.png

For a more in-depth tutorial, and more workflow examples, please take a look at the tutorial.

I would also recommend looking over the documentation to see other functionalities of the package.

Contribution

I work on this package in my spare time, on an "as needed" basis for my research projects. However, pull requests for bug fixes and new features are always welcome!

Please see the develop branch for the development version of the package, and check out the issues page for bug reports and feature requests.

Getting Help

You can find the full documentation for the package here

Python's built-in help function will show documentation for any module or function: help(sm.gait.step_time)

You're encouraged to post questions, bug reports, or feature requests as an issue

Alternatively, ask questions on Gitter

Comments
  • Question

    Question

    I am using sensormotion.py package for finding peaks for one of my applications. I want to know how normalized min_value (0-1) in peak.find_peaks is related to minimum detectable peak value.

    opened by vivekmahadev 2
  • I need help using this library!

    I need help using this library!

    Hi

    I'm very interested in using this library in my project. I have a test of 2min walking at 100Hz and I collect the data from accelerometer, gyro and magnetometer of an Iphone 6.

    I'm trying to use the library with my data but I could understand some things. For example this function sm.peak.find_peaks(ac_lags, ac, peak_type='peak', min_val= 0.6, min_dist=32, plot=True). What are the suitable values of min_val and min_dist parameters? Are they problem dependent? I have tried with many values and the step estimation is not correct.

    Please, could you help me?

    Best regards

    opened by ogreyesp 1
  • sm.gait.step_regularity IndexError

    sm.gait.step_regularity IndexError

    step_reg, stride_reg = sm.gait.step_regularity(ac_peak_values) File ".../python3.6/site-packages/sensormotion-1.1.0-py3.6.egg/sensormotion/gait.py", line 128, in step_regularity ac_d2 = peaks_half[2] # second dominant period i.e. a stride (left-left) sm.gait.step_regularity IndexError: index 2 is out of bounds for axis 0 with size 2

    opened by jiakang 1
  • Example: Importing from live cvs file?

    Example: Importing from live cvs file?

    opened by RandoSY 1
  • Question about step regularity

    Question about step regularity

    Hey, I'm using your package right now to generate features for a dataset. I have looked at the paper by Moe Nilssen et al. and tried to follow the steps for calculating step and stride regularity. However, I wonder why you still do the following calculation at the end:

    step_reg = ac_d1 / ac_lag0 stride_reg = ac_d2 / ac_lag0

    Can you help me with this?

    opened by vanessabin 1
Releases(1.1.4)
Owner
Simon Ho
Data Science | Machine Learning | Statistics | Gaming
Simon Ho
Predictive Modeling & Analytics on Home Equity Line of Credit

Predictive Modeling & Analytics on Home Equity Line of Credit Data (Python) HMEQ Data Set In this assignment we will use Python to examine a data set

Dhaval Patel 1 Jan 09, 2022
PyEmits, a python package for easy manipulation in time-series data.

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Thompson 5 Sep 23, 2022
Python implementation of Principal Component Analysis

Principal Component Analysis Principal Component Analysis (PCA) is a dimension-reduction algorithm. The idea is to use the singular value decompositio

Ignacio Darago 1 Nov 06, 2021
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data

tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)

136 Dec 22, 2022
Uses MIT/MEDSL, New York Times, and US Census datasources to analyze per-county COVID-19 deaths.

Covid County Executive summary Setup Install miniconda, then in the command line, run conda create -n covid-county conda activate covid-county conda i

Ahmed Fasih 1 Dec 22, 2021
simple way to build the declarative and destributed data pipelines with python

unipipeline simple way to build the declarative and distributed data pipelines. Why you should use it Declarative strict config Scaffolding Fully type

aliaksandr-master 0 Jan 26, 2022
Stream-Kafka-ELK-Stack - Weather data streaming using Apache Kafka and Elastic Stack.

Streaming Data Pipeline - Kafka + ELK Stack Streaming weather data using Apache Kafka and Elastic Stack. Data source: https://openweathermap.org/api O

Felipe Demenech Vasconcelos 2 Jan 20, 2022
Sample code for Harry's Airflow online trainng course

Sample code for Harry's Airflow online trainng course You can find the videos on youtube or bilibili. I am working on adding below things: the slide p

102 Dec 30, 2022
An implementation of the largeVis algorithm for visualizing large, high-dimensional datasets, for R

largeVis This is an implementation of the largeVis algorithm described in (https://arxiv.org/abs/1602.00370). It also incorporates: A very fast algori

336 May 25, 2022
MeSH2Matrix - A set of Python codes for the generation of biomedical ontologies from the MeSH keywords of the PubMed scholarly publications

A set of Python codes for the generation of biomedical ontologies from the MeSH keywords of the PubMed scholarly publications

SisonkeBiotik 6 Nov 30, 2022
BioMASS - A Python Framework for Modeling and Analysis of Signaling Systems

Mathematical modeling is a powerful method for the analysis of complex biological systems. Although there are many researches devoted on produ

BioMASS 22 Dec 27, 2022
Picka: A Python module for data generation and randomization.

Picka: A Python module for data generation and randomization. Author: Anthony Long Version: 1.0.1 - Fixed the broken image stuff. Whoops What is Picka

Anthony 108 Nov 30, 2021
DataPrep — The easiest way to prepare data in Python

DataPrep — The easiest way to prepare data in Python

SFU Database Group 1.5k Dec 27, 2022
A variant of LinUCB bandit algorithm with local differential privacy guarantee

Contents LDP LinUCB Description Model Architecture Dataset Environment Requirements Script Description Script and Sample Code Script Parameters Launch

Weiran Huang 4 Oct 25, 2022
A CLI tool to reduce the friction between data scientists by reducing git conflicts removing notebook metadata and gracefully resolving git conflicts.

databooks is a package for reducing the friction data scientists while using Jupyter notebooks, by reducing the number of git conflicts between different notebooks and assisting in the resolution of

dataroots 86 Dec 25, 2022
Yet Another Workflow Parser for SecurityHub

YAWPS Yet Another Workflow Parser for SecurityHub "Screaming pepper" by Rum Bucolic Ape is licensed with CC BY-ND 2.0. To view a copy of this license,

myoung34 8 Dec 22, 2022
API>local_db>AWS_RDS - Disclaimer! All data used is for educational purposes only.

APIlocal_dbAWS_RDS Disclaimer! All data used is for educational purposes only. ETL pipeline diagram. Aim of project By creating a fully working pipe

0 Apr 25, 2022
A Python 3 library making time series data mining tasks, utilizing matrix profile algorithms

MatrixProfile MatrixProfile is a Python 3 library, brought to you by the Matrix Profile Foundation, for mining time series data. The Matrix Profile is

Matrix Profile Foundation 302 Dec 29, 2022
Employee Turnover Analysis

Employee Turnover Analysis Submission to the DataCamp competition "Can you help reduce employee turnover?"

Jannik Wiedenhaupt 1 Feb 13, 2022
Aggregating gridded data (xarray) to polygons

A package to aggregate gridded data in xarray to polygons in geopandas using area-weighting from the relative area overlaps between pixels and polygons. Check out the binder link above for a sample c

Kevin Schwarzwald 42 Nov 09, 2022