ETL flow framework based on Yaml configs in Python

Overview

logo

ETL framework based on Yaml configs in Python

Supported Python Versions License Code style: black

A light framework for creating data streams. Setting up streams through configuration in the Yaml file. There is a schedule, task pools, concurrency limitation. Works quickly, does not require a lot of resources. Runs on Windows and Linux. Flow run in parallel via threading library. Internally SQLite Database. Native data transformation. There is a web interface.

At the moment there are connectors to sources

  • CSV file
  • SQLite
  • Postgres
  • MySQL
  • Yandex Metrika Management API
  • Yandex Metrika Stats API
  • Yandex Metrika Logs API
  • Yandex Direct API
  • Yandex Direct Report API
  • Criteo
  • Google Sheets

Storages

  • Save to csv file
  • Clickhouse

Documentation

Requirements

  • python >=3.9
  • virtual environment

Settings

It is highly recommended to install in a virtual environment.

Flowmaster needs a home, '{HOME}/FlowMaster' is the default,
but you can lay foundation somewhere else if you prefer
(optional)

For Windows

setx FLOWMASTER_HOME "{YOUR_PATH}"

For Linux

export FLOWMASTER_HOME={YOUR_PATH}

Installing

pip install flowmaster==0.7.1

# For install web UI.
pip install flowmaster[webui]==0.7.1

# Optional libraries.
pip install flowmaster[clickhouse,postgres,mysql,yandexdirect,yandexmetrika,criteo,googlesheets]==0.7.1

Run

flowmaster run --help
flowmaster run

WEB UI

http://localhost:8822

CHANGELOG

Support

Telegram support chat

Author

Pavel Maksimov

My contacts Telegram, Facebook

Удачи тебе, друг! Поставь звездочку ;)

You might also like...
signac-flow - manage workflows with signac
signac-flow - manage workflows with signac

signac-flow - manage workflows with signac The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, a

Elementary is an open-source data reliability framework for modern data teams. The first module of the framework is data lineage.
Elementary is an open-source data reliability framework for modern data teams. The first module of the framework is data lineage.

Data lineage made simple, reliable, and automated. Effortlessly track the flow of data, understand dependencies and analyze impact. Features Visualiza

Randomisation-based inference in Python based on data resampling and permutation.

Randomisation-based inference in Python based on data resampling and permutation.

Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code. Tuplex has similar Python APIs to Apache Spark or Dask, but rather than invoking the Python interpreter, Tuplex generates optimized LLVM bytecode for the given pipeline and input data set.

BioMASS - A Python Framework for Modeling and Analysis of Signaling Systems
BioMASS - A Python Framework for Modeling and Analysis of Signaling Systems

Mathematical modeling is a powerful method for the analysis of complex biological systems. Although there are many researches devoted on produ

 PyChemia, Python Framework for Materials Discovery and Design
PyChemia, Python Framework for Materials Discovery and Design

PyChemia, Python Framework for Materials Discovery and Design PyChemia is an open-source Python Library for materials structural search. The purpose o

wikirepo is a Python package that provides a framework to easily source and leverage standardized Wikidata information
wikirepo is a Python package that provides a framework to easily source and leverage standardized Wikidata information

Python based Wikidata framework for easy dataframe extraction wikirepo is a Python package that provides a framework to easily source and leverage sta

PLStream: A Framework for Fast Polarity Labelling of Massive Data Streams

PLStream: A Framework for Fast Polarity Labelling of Massive Data Streams Motivation When dataset freshness is critical, the annotating of high speed

Comments
  •  No such file or directory: '/home/ubuntu/FlowMaster/pools.yaml'

    No such file or directory: '/home/ubuntu/FlowMaster/pools.yaml'

    Привет, очень хороший проект, однако столкнулся со следующей проблемой при устанвоке библиотеки

    1. с ванильным python pip такого пакета вообще не видно
    2. при установке через conda установка проходит замечательно, однако при запуске получаю
    (base) [email protected]:~/FlowMaster$ flowmaster run
    Traceback (most recent call last):
      File "/home/ubuntu/miniforge3/bin/flowmaster", line 5, in <module>
        from flowmaster.__main__ import app
      File "/home/ubuntu/miniforge3/lib/python3.9/site-packages/flowmaster/__main__.py", line 9, in <module>
        import flowmaster.cli.notebook
      File "/home/ubuntu/miniforge3/lib/python3.9/site-packages/flowmaster/cli/notebook.py", line 5, in <module>
        from flowmaster.service import (
      File "/home/ubuntu/miniforge3/lib/python3.9/site-packages/flowmaster/service.py", line 11, in <module>
        from flowmaster.operators.etl.policy import ETLNotebook
      File "/home/ubuntu/miniforge3/lib/python3.9/site-packages/flowmaster/operators/etl/__init__.py", line 3, in <module>
        from flowmaster.operators.etl.providers.abstract import ProviderAbstract, ExportAbstract
      File "/home/ubuntu/miniforge3/lib/python3.9/site-packages/flowmaster/operators/etl/providers/__init__.py", line 4, in <module>
        from flowmaster.operators.etl.providers.criteo import CriteoProvider
      File "/home/ubuntu/miniforge3/lib/python3.9/site-packages/flowmaster/operators/etl/providers/criteo/__init__.py", line 2, in <module>
        from flowmaster.operators.etl.providers.criteo.export import (
      File "/home/ubuntu/miniforge3/lib/python3.9/site-packages/flowmaster/operators/etl/providers/criteo/export.py", line 8, in <module>
        from flowmaster.executors import SleepIteration
      File "/home/ubuntu/miniforge3/lib/python3.9/site-packages/flowmaster/executors/__init__.py", line 16, in <module>
        from flowmaster.pool import pools
      File "/home/ubuntu/miniforge3/lib/python3.9/site-packages/flowmaster/pool.py", line 106, in <module>
        pools_dict = YamlHelper.parse_file(str(Settings.POOL_CONFIG_FILEPATH))
      File "/home/ubuntu/miniforge3/lib/python3.9/site-packages/flowmaster/utils/yaml_helper.py", line 14, in parse_file
        with open(path, "rb") as f:
    FileNotFoundError: [Errno 2] No such file or directory: '/home/ubuntu/FlowMaster/pools.yaml'
    

    Что я делаю не так?(

    opened by micweeks 1
Releases(0.7.1)
  • 0.7.1(Aug 29, 2021)

    • prevented planned of tasks from one instance of the operator class
    • fixed error GeneratorExit
    • fixed transform array type for Clickhouse loader
    Source code(tar.gz)
    Source code(zip)
  • 0.6.1(Jun 22, 2021)

    Redesigned executor

    New

    • add politics 'time_limit_seconds_from_worktime', 'soft_time_limit_seconds'.
    • add provider 'flowmaster'

    Fixing

    • fix schedule (interval seconds mode)
    • add logging 'loguru'
    • fix clear_statuses_of_lost_items
    • fix allow_execute_flow
    • change command 'db reset'

    There are backward incompatible changes

    • new field 'expires_utc' in FlowItem
    • rename command 'run' to 'run_local' and rename command 'run_thread' to 'run'
    • add new class ExecutorIterationTask.
    • change, moving and rename class ThreadExecutor to ThreadAsyncExecutor.
    • change and rename class SleepTask to SleepIteration.
    • change and rename class TaskPool to NextIterationInPools.
    • ETLOperator return ExecutorIterationTask.
    • rename func order_flow to ordering_flow_tasks.
    • rename func start_executor to sync_executor.
    • rename field FlowItem.config_hash to FlowItem.notebook_hash
    • change FLOW_CONFIGS_DIR and rename FLOW_CONFIGS_DIR to NOTEBOOKS_DIR
    • rename objects config to notebook
    • add class Settings
    Source code(tar.gz)
    Source code(zip)
  • 0.3.1(May 15, 2021)

  • 0.2.2(May 13, 2021)

Owner
Павел Максимов
Python Data Engineer, Python Developer, ETL, Разработчик рекомендательных систем
Павел Максимов
pyETT: Python library for Eleven VR Table Tennis data

pyETT: Python library for Eleven VR Table Tennis data Documentation Documentation for pyETT is located at https://pyett.readthedocs.io/. Installation

Tharsis Souza 5 Nov 19, 2022
The lastest all in one bombing tool coded in python uses tbomb api

BaapG-Attack is a python3 based script which is officially made for linux based distro . It is inbuit mass bomber with sms, mail, calls and many more bombing

59 Dec 25, 2022
Pandas and Spark DataFrame comparison for humans

DataComPy DataComPy is a package to compare two Pandas DataFrames. Originally started to be something of a replacement for SAS's PROC COMPARE for Pand

Capital One 259 Dec 24, 2022
Repository created with LinkedIn profile analysis project done

EN/en Repository created with LinkedIn profile analysis project done. The datase

Mayara Canaver 4 Aug 06, 2022
Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python

Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python 📊

Thomas 2 May 26, 2022
BErt-like Neurophysiological Data Representation

BENDR BErt-like Neurophysiological Data Representation This repository contains the source code for reproducing, or extending the BERT-like self-super

114 Dec 23, 2022
First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we want to understand column level lineage and automate impact analysis.

dbt-osmosis First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we wan

Alexander Butler 150 Jan 06, 2023
Automatic earthquake catalog building workflow: EQTransformer + Siamese EQTransformer + PickNet + REAL + HypoInverse

Automatic regional-scale earthquake catalog building workflow: EQTransformer + Siamese EQTransforme

Xiao Zhuowei 9 Nov 27, 2022
First steps with Python in Life Sciences

First steps with Python in Life Sciences This course material is part of the "First Steps with Python in Life Science" three-day course of SIB-trainin

SIB Swiss Institute of Bioinformatics 22 Jan 08, 2023
BigDL - Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems

Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems.

Vo Cong Thanh 1 Jan 06, 2022
Lale is a Python library for semi-automated data science.

Lale is a Python library for semi-automated data science. Lale makes it easy to automatically select algorithms and tune hyperparameters of pipelines that are compatible with scikit-learn, in a type-

International Business Machines 293 Dec 29, 2022
Analyzing Covid-19 Outbreaks in Ontario

My group and I took Covid-19 outbreak statistics from ontario, and analyzed them to find different patterns and future predictions for the virus

Vishwaajeeth Kamalakkannan 0 Jan 20, 2022
Renato 214 Jan 02, 2023
This mini project showcase how to build and debug Apache Spark application using Python

Spark app can't be debugged using normal procedure. This mini project showcase how to build and debug Apache Spark application using Python programming language. There are also options to run Spark a

Denny Imanuel 1 Dec 29, 2021
Data imputations library to preprocess datasets with missing data

Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do.

Elton Law 329 Dec 05, 2022
Repositori untuk menyimpan material Long Course STMKGxHMGI tentang Geophysical Python for Seismic Data Analysis

Long Course "Geophysical Python for Seismic Data Analysis" Instruktur: Dr.rer.nat. Wiwit Suryanto, M.Si Dipersiapkan oleh: Anang Sahroni Waktu: Sesi 1

Anang Sahroni 0 Dec 04, 2021
CS50 pset9: Using flask API to create a web application to exchange stocks' shares.

C$50 Finance In this guide we want to implement a website via which users can “register”, “login” “buy” and “sell” stocks, like below: Background If y

1 Jan 24, 2022
Orchest is a browser based IDE for Data Science.

Orchest is a browser based IDE for Data Science. It integrates your favorite Data Science tools out of the box, so you don’t have to. The application is easy to use and can run on your laptop as well

Orchest 3.6k Jan 09, 2023
A Python package for the mathematical modeling of infectious diseases via compartmental models

A Python package for the mathematical modeling of infectious diseases via compartmental models. Originally designed for epidemiologists, epispot can be adapted for almost any type of modeling scenari

epispot 12 Dec 28, 2022
Data Analytics on Genomes and Genetics

Data Analytics performed on On genomes and Genetics dataset to predict genetic disorder and disorder subclass. DONE by TEAM SIGMA!

1 Jan 12, 2022